Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
FOR years, scientists just down the road from Oxford have been quietly working at the forefront of a project that could change the world.
But fusion power is the best invention you have probably never heard of.
That may sound like a bold claim, but Prof Steve Cowley, chief executive officer of the Culham Centre for Fusion Energy, is convinced that it is the only solution to a fast-approacing world energy crisis.
He has been working at the science centre since 2008, but the project — the Joint European Torus (JET) — has been under way since 1982. Its aim: to create the conditions of a star on the Earth, producing clean, cheap energy for us to power our televisions, kettles and lightbulbs.
Culham Center for Fusion Energy, in a consortium with UK universities and Rutherford Appleton Laboratory, is developing a concept for a large neutron source to test materials for future fusion power plants including the proposed prototype, DEMO, that will follow the ITER project.
If approved, the FAFNIR project would give the designers of DEMO crucial data on materials with which to build the machine. It would also serve as a bridge to the planned International Fusion Materials Irradiation Facility (IFMIF), which is expected to play a similar role for the first generation of commercial fusion reactors.
Fusion scientists and engineers are increasingly focusing on materials research as attention turns to designs for reactors that will put power on the electricity grid. The extremely fast neutrons produced by fusion reactions in tokamaks carry an energy of 14 million electron volts (MeV) — about 70 times more than photons in hospital x-ray equipment — and pose a threat to the tokamak's structures. The neutrons cause damage within the structure of the material which leads to swelling through the creation of voids. Effects such as embrittlement and hardening of the metal caused by accumulation of helium and hydrogen gases produced by transmutation (transformation of one element into another) mean that special materials must be developed that can stay the course throughout the reactor's lifespan. As a result of transmutations caused by the neutrons, radioactive elements are produced within the tokamak components, so choosing materials that will shed their radioactivity quickly is another priority for safe decommissioning.