Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
ITER catalyzes the development of superconducting technology in Russia
ITER catalyzes the development of superconducting technology in Russia
The ITER Project was represented at a recent roundtable in Russia that reunited the State Duma (the lower chamber of the Russian Parliament), the Public Chamber, the state corporation Rosatom, the Kurchatov Institute, the Russian Academy of Sciences, the Federal Energy Service Company FSUE, and leading specialists from the fields of superconductivity and energy.
Organized on 6 June 2014 to address the current status and development prospects of applied heavy-current superconductivity in Russia, the forum aimed to create a common understanding of the potential and the challenges of the field.
The ITER Project was represented by the director of ITER Russia, Anatoly Krasilnikov, who stressed that participation in the project has catalyzed the development of superconducting technology in Russia. A superconducting strand production line was created from scratch at the Chepetsky Mechanical Plant (Glazov, Udmurt Republic) and - thanks to the cooperation between some of the country's leading industries - Russian superconductor for ITER matches the highest world standards.
The following Russian institutes and industries are collaborating to fulfil Russia's procurement to ITER: the Chepetsky Mechanical Plant (strand manufacturing); the Bochvar Institute (strand verification); JSC VNIIKP (cabling); Institute for High Energy Physics (jacketing); and the Kurchatov Institute (global leak test and the mechanical testing of jacketing material). All deliveries of Russian conductor lengths for ITER's toroidal field and poloidal field magnet systems should be completed in 2015.
A 25-minute documentary in English on the ITER Project produced by Technology Update (Russia Today) won the bronze world medal at an international film festival in New York City this spring.
Produced back in October 2013, "Way to New Energy" traces the origins of ITER, fusion and the tokamak, taking the viewer to Moscow, Marseille, and Saint Paul-lez-Durance, France as the story unfolds.
Vitali Dmitrievich Shafranov passed away on 9 June 2014 in Moscow.
V.D. Shafranov was an outstanding physicist, world-recognized leader in the theory of confinement, equilibrium and stability of toroidal magnetic systems, and one of the principal founders of modern plasma physics and magnetic fusion research.
During the Second World War he worked with his father on road construction and received his first government award in 1943 at the age of 14. He graduated school with a gold medal in 1946. After graduation from Moscow state university in 1951 he started his scientific career at LIPAN (part of the future Kurchatov Institute) in the department of Academician Mikhail Leontovich. He published his first paper on the stability of soft wire in parallel magnetic field together with M. Leontovich in 1952.
Three of his most important pioneering results are:
1) An equation describing plasma equilibrium in axisymmetric magnetic field (Shafranov-Grad, 1956)
2) An equation for the Shafranov shift of magnetic surfaces with respect to tokamak magnetic axis
3) Shafranov-Kruscal criterium of plasma stability with respect to helical kink modes (1953)
Beginning 1981 he was the member-correspondent of the USSR Academy of Science and in 1997 he became an Academician of the Russian Academy of Science.
Academician V. D. Shafranov is the author of more than 200 scientific publications. For over 20 years he was the head of the Plasma Theory Department at the Kurchatov Institute. He was also chief editor of Plasma Physics Reports and editor of the Review of Plasma Physics for over 25 years.
His colleagues remember his modesty to colleagues and the great attention he paid to their every concern.
CAMBRIDGE — Senator Elizabeth Warren placed her hand atop a large red button and pressed firmly, restarting a nuclear experiment that MIT believes could help save the planet — but which the Obama administration considered superfluous and tried to kill year after year.
More than 100 scientists, engineers, and technicians — most of whom had, until recently, been under layoff notices — had gathered on campus that cold February day, their eyes glued to the three projection screens hanging from the front of the control room.
Then as superhot plasma inside the fusion reactor next door reached its metal walls, a flash of light appeared on one of the screens. The grand energy experiment had throbbed back to life.