Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
The clouds cleared up in time to welcome three distinguished members of the South Korea's National Assembly on 25 June 2014. Hae Ja Park, Sye-kyun Chung, and Young Kyo Seo were accompanied by the head of the Korean Domestic Agency for ITER, Kijung Jung. They were warmly welcomed by ITER Director-General Motojima who presented the current status of the ITER Project before they headed out onto the construction site for a visit.
At the end of the visit, Sye-kyun Chung remarked how impressive the project is and how, "in the long term, this project will be very helpful for all of humanity."
Learning to harness fusion in a controlled way — recreating the sun on earth, as a clean source of energy — is the objective of national programs in Asia, Europe and the USA. And the race is heating up, with several quite promising options.
According to Professor Allan Offenberger "A sustained fusion burn is no longer an academic dream but will be realized in the near future."
Dr. Offenberger, on behalf of the Alberta Council of Technologies Society (ABCtech), led an assessment team on visits to the major programs around the world last year. As part of the assessment, the Society also entertained Alberta energy leaders in workshops in Calgary and Edmonton and invited international fusion researchers to report on progress at a Forum co-hosted with Alberta Energy at Alberta Innovates last fall.
Included in the Report — and found favourable — was an assessment of the merit of employing fusion energy in oil sands extraction. "Fusion ignition generates heat that would reduce the need for vast quantities of natural gas in oil sands extraction," notes Dr. Robert Fedosejevs, from the Engineering Faculty at the University of Alberta, who also participated on the assessment team.
V. Putin talks with Kurchatov's director M. Kovalchuk
V. Putin talks with Kurchatov's director M. Kovalchuk
Russia's President Vladimir Putin met with Director of the National Research Centre Kurchatov Institute Mikhail Kovalchuk.
Mr Kovalchuk briefed the President about the results of implementing a state program for developing the Kurchatov Institute.
PRESIDENT OF RUSSIA VLADIMIR PUTIN: Mr Kovalchuk, four years ago, you proposed a development program for the Kurchatov Institute. The Kurchatov Institute is one of the leading research institutions working in nuclear physics, if not the leading institution. And you have received six billion each year with the goal of development?
DIRECTOR OF THE NATIONAL RESEARCH CENTRE KURCHATOV INSTITUTE MIKHAIL KOVALCHUK: Yes, that was the amount.
VLADIMIR PUTIN: I know that the program is about to conclude, and I would like to hear about the results we have reached. Moreover, I know you are currently working on the next program.
MIKHAIL KOVALCHUK: Mr President, I would like to report to you about the most significant results reached while implementing the program launched on your initiative and the most important results that are significant for our nation's economy.
Read the whole conversation transcription on the Foreign Affairs website.
Ever been curious about how a Tokamak works? Or how it creates energy? Thanks to the new app Operation Tokamak from EFDA (available in IOS and Android), you can operate a Tokamak from the comfort of your own couch. Chose your level, slowly heat the plasma, and create energy—shooting all the while at magnetic islands in order to keep the plasma going. Though the app has been simplified from a working Tokamak, you can still get a good sense of the magnitiude of a real fusion reactor.
Europe's E-ELT blast marks first step in new science mega-project
Europe's E-ELT blast marks first step in new science mega-project
Construction of the European Extremely Large Telescope has officially begun in the Atacama desert in Chile, marking the first step in a true mega-project that could offer us answers to some of the most profound questions in science.
The event this week, the blasting of the top of Cerro Armazones — 3,000 metres high until Thursday, a few less now — was far less dramatic than many of the onlookers at the European Southern Observatory's Paranal facility 25 kilometres away had hoped for, but it was a significant first step in taking the E-ELT from the drawing board to reality.
The function of the blast was to loosen many thousands of tons of rock from the summit in order for the earth movers to begin clearing a flat, circular area for the foundations of the telescope. This really is just the first small step in a massively ambitious project to build the E-ELT that will take at least a decade to finish.
The science case for the E-ELT is quite easy to make, even to non-astronomers. While some of the great telescopes now in space and on the ground are designed to observe technical subjects such as the geometry of galaxies or the formation of stars, the E-ELT pitches itself as the telescope that will allow us to directly look at other planets around other stars.
The E-ELT science team reckon they have a good chance of being the first to directly observe little blue dots like Earth, if they exist.