Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
On 21 May, directly after the regular class schedule, students, graduates and young scientists of the Moscow Institute of Physics and Technology had the chance to meet representatives of the Russian Domestic Agency. The exchange was organized as part of ITER Day to inform Russia's future physicists about the international collaboration for fusion, progress in its implementation, and the ongoing activities in Russia carried out within its framework.
The head of the Russian Domestic Agency, Anatoly Krasilnikov, stressed that attraction of young scientists for fusion is based not only on the potential of the ITER Project, but also the national development program for the construction of a domestic fusion facility. "This is the decades-long project and we need highly qualified personnel to work for it!" ITER Russia is intensifying its activities to inform and attract the best minds.
During ITER Day, students heard about development work on a number of diagnostic systems for ITER (reflectometry, neutron diagnostics, optical systems) underway in Russian institutes where, the speakers stressed, employments opportunities exist.
A six-kilometre-long channel, the Canal de Caronte, leads from the Mediterranean Gulf of Fos into the inland sea Étang de Berre. At its narrowest along the south shore of the island that encloses the old town of Martigues, its width does not exceed 25 metres.
On Monday 31 March, the barge carrying the 800-ton ITER test convoy deftly negotiated the canal and passed under the Martigues drawbridge, a spectacular sight that marks the entrance into the Étang de Berre.
ITER's Pulsed Power Electrical Network (PPEN) will supply alternating current (AC) power to the machine's superconducting coils and heating and current drive systems. The Chinese Domestic Agency has full responsibility for the procurement of this powerful system; recently Manufacturing Readiness Reviews held at three industrial suppliers proved the high standards of design carried out so far and the readiness of the detailed work plans and execution processes.
In the presence of a large number of Chinese experts as well as representatives from the ITER Organization, reviews were held on six system sub-packages in April. For the technical issues identified, a work schedule has been established. A major step forward toward manufacturing has been achieved for the PPEN, which will distribute up to 500 MW of continuous power during operational pulses.
European labs to design the fast-ion diagnostic for ITER
European labs to design the fast-ion diagnostic for ITER
The European Domestic Agency for ITER, Fusion for Energy, has signed a four-year Framework Partnership Agreement with a consortium formed by European research centres—DTU Denmark and IST-IPFN Portugal—for the development and design of the Collective Thompson Scattering diagnostic for ITER.
The primary objective of the Collective Thomson Scattering (CTS) diagnostic is to monitor fast ion behaviour across the plasma radius in seven locations. Fast ions are elusive particles that are a natural consequence of the fusion process and plasma heating techniques. Although they represent less than five percent of plasma density, fast ions carry up to one-third of the plasma's kinetic energy. Optimizing their confinement within the plasma is important as they play a major part in sustaining the high plasma temperatures required for fusion by colliding with—and transferring their energy to—the 'bulk' particles in the plasma.
However, fast ions behave unpredictably; while some remain within the magnetic field, others escape the plasma and reduce confinement, or 'cause mischief' by contributing their energy to and amplifying plasma disturbances.
The CTS diagnostic system will consist of mirrors and antennas integrated into one of the equatorial ports of the ITER machine. The upper antenna and mirrors will launch a powerful, single and high frequency microwave beam (1 MW at 60 GHz, equivalent to 1,000 microwave ovens at full power) into the plasma and record the scattered electromagnetic waves through the lower mirrors and receiver antennas. These measurements will allow scientists to establish the dynamics and distribution of the ions in the plasma—in particular the fast ions.
Every other year, Turkey organizes the International Conference on Superconductivity and Magnetism (ICSM). On 27 April-2 May, the fourth edition of the conference was held in Antalya, on the southwestern coast of the country, gathering more than 1,000 scientists from all over the world.
At the special opening plenary session on 27 April, after a welcome speech by Annette Bussmann-Holder from the Max Planck Institute for Solid State, the next speaker gave a recollection of his long experience researching oxides: Alexander Müller, who earned the Nobel Prize in Physics in 1987 with Georg Bednorz, had just celebrated his 87th birthday and recalled having participated in the 1958 Geneva conference where the concept of tokamak was first discussed outside Russia. He is also the co-author of a patent on spherical plasma confinement.
Arnaud Devred, ITER Superconductor Section Leader, had the privilege of speaking just after Alexander Müller. His general presentation on the ITER Project focused on the magnet systems and detailed the present status of manufacturing. "I sensed a real interest in ITER," he says, "particularly from Prof. Ali Gencer, who chaired the conference and is a strong promoter of the project in government circles."
Visit the EFDA website to read the May issue of Fusion in Europe on line.
Article highlights include the latest news on the establishment of EUROfusion—the umbrella organization of European fusion research that will succeed EFDA; upgrade work on the Mega Amp Spherical Tokamak (MAST); this year's work program for JET, currently the largest functioning tokamak in the world; and news from some of the younger faces of fusion.