Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Back to the future: are we about to crack fusion energy?
Back to the future: are we about to crack fusion energy?
Can we harness the energy of an earth-bound sun? It's a question that has obsessed and perplexed scientists for more than half a century. According to Professor Steve Cowley, director of the Culham Centre for Fusion Energy (CCFE) and chief executive of the United Kingdom Atomic Energy Authority, it remains one of the "great quests" in science.
For the uninitiated, it's the kind of big idea that makes your head spin: we're talking about mimicking the process that powers the stars, heating hydrogen atoms to temperatures in excess of 100 million degrees celsius — the point at which they fuse into heavier helium atoms — and releasing energy in the process.
The creation of a self-sustaining reaction here on Earth would be a revolutionary moment for humanity. It would mean we'd have a near-limitless source of energy that is clean, safe and cheap. The fuel used for fusion (two isotopes of hydrogen, deuterium and tritium) is so abundant it will effectively never run out; one kilogram of it provides the same amount of energy as 10 million kilograms of fossil fuel.
And while some fusion reactor components would become mildly radioactive over time, they should be safe to recycle or dispose of conventionally within 100 years, according to fusion experts.
Tokamak tales from the Culham Centre for Fusion Energy
Tokamak tales from the Culham Centre for Fusion Energy
Want to know what it's like to work in fusion? In a new blog from the Culhan Centre for Fusion Energy (CCFE), graduate physicists and engineers lift the lid on life at Culham.
Tokamak Tales aims to show the world what the graduates get up to. What they do day-to-day, what exciting projects they are working on, and their experiences as a CCFE graduate.
Editor Ailsa Sparkes says: "The aim is to have an informal platform which is interesting to read for the public and for our staff. We are going to show you what it's like to work at a major lab and what progress we're making with fusion energy — we hope to both amuse and enlighten you! We're looking forward to getting comments and questions, and we'd also welcome contributions from other fusion researchers."
Northern lights' physics could aid in nuclear fusion
Northern lights' physics could aid in nuclear fusion
The aurora is more than just a breathtaking display of light. It may also hold the secret of a magnetic phenomenon related to the nuclear fusion powering the sun. This secret could even help create nuclear fusion in the lab, says a team of researchers.
[...] Now a team of researchers from the University of Michigan and Princeton University hopes that the performance of fusion experiments can be improved by investigating of the dynamics of magnetic fields observed during the aurora.
Pushing negative ion beam technology to the extreme
Pushing negative ion beam technology to the extreme
The newly commissioned ELISE test facility has begun operation at the Max Planck Institute for Plasma Science (IPP) in Garching, Germany. Funded by the European Domestic Agency as a voluntary European contribution to the neutral beam program, ELISE (Extraction from a Large Ion Source Experiment) is the first large radio-frequency-driven negative ion source in the world, approximately half the size of the source that will be installed at ITER for the neutral beam injectors.
In this latest video from the European Domestic Agency, the scientists and engineers responsible for operating ELISE talk about plans for the test bed, the challenges of achieving ITER performance parameters, and the importance of research carried out within the frame of the experiment for the ITER neutral beam development program.
Visit the European Domestic Agency website to watch the video.
On 20 May, the world will witness a welcome staging post in the quest to develop nuclear fusion, when Germany's Max Planck Institute for Plasma Physics switches on the Wendelstein 7-X, an earth-bound machine built to mimic the way in which stars generate energy.
The project is part of the German national fusion research program but has received significant support at nearly 30 percent of the total cost from the EU's Euratom program.
Despite its schedule slipping eight years, from 2006 to 2014, and the cost doubling from an original EUR 500 million to more than EUR 1 billion, the anticipation among fusion scientists is palpable.
Eventually, it is hoped, the Wendelstein 7-X will provide a baseline for a future commercial power plant that like the sun and the stars derives energy from the fusion of atomic nuclei.
The European Commission has appointed Maria de Aires Soares as the Head of its Representation in Portugal. She will take up office on 16 May 2014.
Mrs Soares brings to her new role proven leadership and management skills, an extensive knowledge and experience of the European institutions, a track-record of working with a variety of stakeholders and a strong background in political analysis and communicating policy.
Since November 2011 Mrs Soares has (as a Commission official seconded in the interest of the service) been the Head of the Finance and Budget Division at the ITER Organization in Saint Paul-lez-Durance, France.
Prior to this appointment she served as Minister-Counselor, Head of the Research, Technology, Innovation and Education Section at the Delegation of the European Union to the United States in Washington DC.
Mrs Soares joined the European Commission in 1989 in the Directorate General for Research and Innovation, holding different management positions in areas ranging from administration and finance to researchers' mobility and energy.
In particular she promoted and developed an energy cooperation strategy between the European Union and Brazil, China, India, Japan, Russia, South Korea and the US.
She was admitted to the Lisbon Bar in 1980 and started her professional career at a law firm in Lisbon. Immediately before joining the European Commission she held a senior position in the European Organisation for Nuclear Research (CERN) in Geneva.
She is a Law graduate from the University of Lisbon and holds a Ph. D. in Law from the University of Montpellier.
THE sun has thrown us a fractal surprise. An unexpected pattern has been glimpsed in the solar wind, the turbulent plasma of charged particles that streams from the sun. It offers clues for handling plasmas that roil inside nuclear fusion reactors on Earth.
Composed of charged particles such as protons and electrons, the solar wind streams from the sun and pervades the solar system. Its flow is turbulent, containing eddies and moving at different speeds in different directions. It was thought that this turbulence was similar to that in a fluid, behaving like mixing ocean currents or the air flows that make aeroplane flights bumpy.
Read the whole article on the New Scientist website.