Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
ITER will use extensive cryogenic technology to create and maintain low-temperature conditions for the magnet, thermal shielding and vacuum pumping systems. The ITER cryoplant will be the largest concentrated cryogenic system in the world (one plant location) and second only to CERN in terms of total cooling power.
On the ITER platform, work is progressing on the foundations of the plant building while—following successive design phases—the procurement of cryoplant components is now underway by Europe (liquid nitrogen plant and auxiliary systems), the ITER Organization (helium plant) and India (cryolines and cryodistribution components).
In February, as part of Europe's procurement package, a 23-metre-long storage tank for liquid helium successfully passed leak detection tests. Responsible for keeping liquid helium at a steady -269 °C, the stainless-steel inner tank has multi-layer insulation to minimize thermal losses and will be assembled with exterior thermal shielding. The examination of 500 metres of linear welds was successfully performed by the manufacturer, opening the way to the delivery of the equipment at ITER before the end of the year.
The storage tank was manufactured by CryoAB (Sweden) as part of the contract signed between the European Domestic Agency and Air Liquide Global and EC Solutions and Fusion for Energy.
Read the original news item on the European Domestic Agency website.
-- Part of ITER's cryoplant, the 190 m³ stainless-steel tank will store liquid helium at -269 °C.
The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a point in history when the ITER fusion experiment is poised to produce more fusion energy than it uses when it is completed in 15 to 20 years, said Ed Synakowski, associate director of Science for Fusion Energy Sciences at the US Department of Energy (DOE).
Synakowski spoke as part of the Ronald E. Hatcher "Science on Saturday" lecture series at the Princeton Plasma Physics Laboratory (PPPL).