Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Big Bang neutrinos are believed to be everywhere in the universe but have never been seen. The expansion of the universe has stretched them and they are thought to be billions of times colder than neutrinos that stream from the sun. As the oldest known witnesses or "relics" of the early universe, they could shed new light on the birth of the cosmos if scientists could pin them down. That's a tall order since these ghostly particles can speed through planets as if they were empty space.
Now Princeton University physicist Chris Tully is readying a facility to detect these information-rich relics that appeared one second after the Big Bang, during the onset of the epoch that fused protons and neutrons to create all the light elements in the universe. Tully runs a prototype lab in the US Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) that draws on the fact that neutrinos can be captured by tritium, a radioactive isotope of hydrogen, and provide a tiny boost of energy to the electrons emitted in tritium decay.
--Princeton physicist Chris Tully in the PTOLEMY laboratory. Behind him are powerful superconducting magnets on either side of the vacuum chamber. Photo Elle Starkman/PPPL
Progress on the MAST Upgrade project at the Culham Centre for Fusion Energy (CCFE) took another step forward from the "page" to completion, as the tokamak's bottom plate was lowered into place in the machine area last week.
Positioning of the 11-tonne bottom plate, which contains intricately-engineered magnetic coils assembled over many months, went smoothly. The team hopes to have the device ready for commissioning at the end of 2016.
European Domestic Agency contractors have made significant progress in the fabrication of the first toroidal field winding pack—the 110-ton inner core of ITER's D-shaped superconducting magnets known as toroidal field coils.
Following sophisticated, multi-stage winding operations, seven layers of coiled superconducting cable (double pancakes) have now been successfully stacked and electrically insulated. After vacuum-pressure insulation and testing, the winding pack will be inserted into a massive stainless steel case to form a final assembly that measures 9 x 17 metres and weighs 310 tons.
Eighteen D-shaped toroidal field coils—each made up of a winding pack and stainless steel coil case—will be responsible for magnetically confining the ITER plasma. Europe has the responsibility for half the coils plus one spare; Japan is producing another 9. The 19 stainless steel coil cases will be procured by Japan.
Beginning with the first manufacturing steps for the niobium-tin (Nb3Sn) superconducting wire in 2008, Europe estimates that over 600 people from at least 26 companies have contributed to this milestone.
Read the full report on the European Domestic Agency website.
--Europe's A. Bonito-Oliva, project manager for magnets, and R. Harrison, technical officer for magnets, stand in front of the first toroidal field coil winding pack at ASG Superconductors (La Spezia, Italy).
The deadline is fast approaching to submit a proposal to the 2016 SOFT Innovation Prize, launched by the European Commission late last year for award at the 29th SOFT (Symposium on Fusion Technology) international conference in Prague in September.
Proposals are requested for physics or technology innovations related to magnetic confinement fusion research that have a potential for further exploitation.
Three prizes will be awarded: EUR 50,000 (1st prize), EUR 25,000 (2nd prize) and EUR 12,500 (3rd prize). The deadline for submission is 7 April 2016.
For more information on eligibility, exclusion and award criteria please see Europe's Horizon 2020 website.