Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

  • Fusion world | The EU blueprint for fusion energy

    The EU Blueprint for Fusion Energy workshop, convened by the European Commission's Directorate-General for Energy, brought together key stakeholders in the fiel [...]

    Read more

  • Neutral beam injection | ELISE achieves target values for ITER

    Researchers at the Max Planck Institute for Plasma Physics in Garching, Germany, have generated the ion current densities required for ITER neutral beam injecti [...]

    Read more

Of Interest

See archived entries

Tritium Building

Work resumes

The energy-producing plasmas in ITER will be fuelled in equal measure by the hydrogen isotopes deuterium and tritium. Deuterium is a stable element that industry has produced routinely since the 1940s; tritium on the other hand is rare, expensive and slightly radioactive and, for all these reasons, must be treated with extreme care and precaution. In the ITER installation, a whole building will accommodate the different systems and equipment that store, handle and recycle this precious element.

Activity has now resumed at level L2 of the Tritium Building. (Click to view larger version...)
Activity has now resumed at level L2 of the Tritium Building.


In late 2018, following ITER Council approval of the updated project schedule and a staged approach to full power operation, major civil works in the Tritium Building were put on hold in order to focus the workforce on the Tokamak and Diagnostics Buildings.

While the Tokamak Building was being readied for machine assembly and plant equipment was being installed in the Diagnostics Building, work was frozen at the Tritium Building at level 1 (L1). Activity has now resumed and the four levels that remain to be erected (L2 through L5) should be completed in the spring of 2023.

Most of the functions of the Tritium Building are directly linked to the full-power operation of the ITER Tokamak and, as such, will not be needed before 2035. However, the building also accommodates equipment that must be operational for First Plasma, such as the gas injection system that will feed hydrogen to the vacuum vessel, or components that are part of the HVAC, cooling system, vacuum pumping systems.

The civil work challenges for the Tritium Building are similar to those of the Tokamak Building, with areas where steel reinforcement will be exceptionally dense. (Click to view larger version...)
The civil work challenges for the Tritium Building are similar to those of the Tokamak Building, with areas where steel reinforcement will be exceptionally dense.
Also, although they will not be needed during the first phases of machine operation, several "captive" components such as manifold segments for the neutral beam injection or disruption mitigation systems must be installed before construction progresses.

The civil work challenges for the Tritium Building are similar to those of the Tokamak Building, with areas where steel reinforcement will be exceptionally dense. The difference is in the interior design: the Tritium Building is a house of many rooms (300 in total), which means there will be many inside walls to build and close to 5,000 cubic metres of concrete to pour.



return to the latest published articles