Assessing the future work environment
As part of their collaboration within the Site Support Agreement*, ITER and its neighbour CEA are developing a novel approach to explore, analyze and assess the work environment in the port cells dedicated to the handling of the test blanket modules. By virtually superimposing 3D models on the world as it is, "augmented reality" tools not only provide an awesome experience but they can contribute to maximizing operator efficiency while minimizing their exposure.
Two pairs of test blanket modules, developed and procured by the ITER Members and each implementing a specific technology, will be embedded into the inner wall of the vacuum vessel. Although the active, plasma-facing element of each breeding module is a relatively small component (1.7 metres tall and 60 centimetres wide), they are part of a much larger structure that weighs close to 45 tonnes.
Every other year, during shut down, two massive structures (each holding two test blanket modules), will need to be extracted so that the plasma-facing elements can be submitted to in-depth analysis.
Although most of the handling operations will be performed automatically and remotely, human intervention will be required at some points. But as the ports stand close to the machine and will have been exposed to burning plasmas for several months, the presence of duly equipped operators will have to be limited and their exposure time reduced to a minimum.
The test blanket systems, which will be installed a few years before full-power operation begins, are presently in the preliminary design phase. "We have drawings, we have 3D models, but in order to optimize our approach, we need more," explains Jean-Pierre Martins, the maintenance engineer in the ITER Tritium Breeding Blanket System section.
The "more" is a novel approach developed by CEA experts and called "augmented" or "extended" reality. It feeds from 3D databases to create an "in-context" immersion, blending and superimposing virtual and "real" elements such as doors, walls and galleries. System designers, experts and decision makers—each wearing a state-of-art headset (such as Microsoft HoloLens)—can participate in the same simulation, exploring the physical configuration of the projected port cell environment and sharing a common understanding of the working configuration and conditions.
Understanding the constraints that the environment will impose is essential to optimizing their interventions. "We are aiming for maximum efficiency and minimum exposure, in line with the ALARA principle (As Low As Reasonably Achievable) that governs radiation exposure in nuclear environments," says Martins. "In this perspective, when implemented at the early phase of a system's design augmented reality is an extremely promising tool. Beyond its application to the test blanket module system, it can be propagated to the entire project."
These past weeks the ITER Director-General, the Heads of Domain, and several managers have donned the magic headset, ventured into the strange world where real and virtual blend, and taken the full measure of augmented reality's potential in planning for the future.
Click here to view a video of the trials.
* Signed in 2009, the Site Support Agreement establishes and defines the relationship between the ITER Organization, the French Commissariat à l'énergie atomique et aux énergies alternatives (CEA) and Agence Iter-France.