Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

  • Fusion world | The EU blueprint for fusion energy

    The EU Blueprint for Fusion Energy workshop, convened by the European Commission's Directorate-General for Energy, brought together key stakeholders in the fiel [...]

    Read more

  • Neutral beam injection | ELISE achieves target values for ITER

    Researchers at the Max Planck Institute for Plasma Physics in Garching, Germany, have generated the ion current densities required for ITER neutral beam injecti [...]

    Read more

Of Interest

See archived entries

Trying on the Tokamak crown

On the very place where the ''B2 slab'' mockup was standing just a few months ago, a new Tokamak support system (''crown'') mockup has been under construction since the end of 2014. (Click to view larger version...)
On the very place where the ''B2 slab'' mockup was standing just a few months ago, a new Tokamak support system (''crown'') mockup has been under construction since the end of 2014.
A crown usually sits on a king's head, or on the top of prestigious buildings such as cathedrals or skyscrapers.

In ITER, the "crown" sits under the machine: it is the structural element that supports the combined mass of the cryostat, vacuum vessel, magnet system and thermal shield—in short, the support system for the 23,000-tonne machine. From both a structural and safety perspective, it is one of the most strategic parts of the installation.

Designing the ITER crown has proved an utterly complex and challenging task, involving several ITER departments as well as experts from the ITER European agency and its architect-engineer Engage.

The crown's complexity stems from the fact that the huge mass that it will support will not be an idle one. In the course of operation, the ITER Tokamak might slightly "up-lift", wobble, or shrink...causing considerable load transfers from the machine to the Tokamak Building basemat.

In late 2012, following some ten months of collaborative effort, the crown design was finalized: it will consist of a thick, circular concrete structure connected to the three-metre-thick bioshield by radial concrete walls. 

The mockup will consist in a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield. (Click to view larger version...)
The mockup will consist in a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield.
In order to allow for the smooth transfer of horizontal and rotational forces generated by the movement of the Tokamak, 18 spherical bearings acting like ball-and-socket joints will be installed between the concrete crown and the steel ring that acts as the interface with the cryostat.

Actual construction, however, is a long way from 3D design documents. When a structural element is as complex and as strategic as the ITER crown, an intermediate step is necessary to demonstrate constructability.

"Just like for the Tokamak Complex basemat slab, we need to be certain that the rebar principles we have opted for are constructible, and we need to qualify the bespoke concrete formula," explains ITER's Nuclear Buildings Section leader Laurent Patisson. "And there's only one way to do this: by trying it first on a real-size mockup."

On the very place where the "B2 slab" mockup was standing just a few months ago, a new mockup has been under construction since the end of 2014. When completed, the large structure will reproduce a 20° segment of the Tokamak crown, complete with a one-metre-thick radial wall and a three-metre-thick section of the bioshield.



return to the latest published articles