Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Nuclear fusion is the dream of energy scientists the world over, because it promises limitless, clean electricity. Most efforts to kickstart the process use high-intensity lasers, insane magnetic field and super-hot hydrogen plasmas. But there may be a more humble alternative. It's called sonofusion, and it involves bubbles...
When liquid undergoes rapid changes in pressure, cavities can form — seemingly from nowhere, but usually around some kind of impurity or imperfection in the fluid. The changing pressure causes this cavity to expand and contract: this is a bubble, and its method of creation is known as cavitation. In particularly violent pressure fields, the bubble can contract so quickly and with so much force that it collapses entirely, producing a shock wave. This phenomenon's what causes the dramatic pitting on boat propellor and water pumps, where high fluctuating pressures causes bubbles to form and collapse.
But in the controlled environment of a laboratory, the bubbles can do more than cause damage. Way back in 1934, at the University of Cologne, H. Frenzel and H. Schultes turned of the lights in their laboratory, put an ultrasound transducer in a tank of photographic developer fluid, and turned it on. They were hoping to speed up the development process of photographic film — but instead, they noticed dots of light that appeared for a split-second at a time This was the first evidence of a process called sonoluminescene, where the large quantities of energy generated by a collapsing bubble cause light to be emitted. And where there's light, there's energy.
On an icy and sunny morning, a delegation of engineers, designers and design office coordinators from the seven Domestic Agencies went down into the Tokamak foundations for a technical visit.
Part of the CAD (Computer Aided Design) Working Group, the 15 members of the delegation were on site for the 13th CAD Working Group Workshop that took place at ITER Headquarters from 27 to 29 January.
The group was warmly welcomed by Laurent Patisson, Section Leader for Nuclear Buildings, who took them for a one-hour tour to the heart of the ITER platform: the foundations of the Tokamak Complex.
After a first glance from the belvedere—the viewpoint from the northern corner of the Tokamak Complex worksite where visitors are usually taken—the group went onto the Tokamak Complex floor (the B2 slab), which was icy in some places due to a recent cold snap.
Although the delegation was more than familiar with the design and the drawings of the ITER facilities, for many it was the first time on site. Philippe Le-Minh, Design Office coordination officer, was particularly thrilled to "feel all the activity going on," while Pierre-Yves Chaffard, head of Technical Support Services for the European Domestic Agency, remarked that it is "always interesting to see with our eyes, what we are used to seeing through our computers."
As the group returned to ITER Headquarters for the rest of their meetings, Geun Hong Kim, Design Office team leader for the Korean Domestic Agency, summed up the general feeling: "Now I can believe that ITER will be successful."
The Institute for Magnetic Fusion Research, ITER's neighbour in Saint Paul-lez-Durance, has published issue #8 of the WEST newsletter.
The issue features a report about the integration of WEST into the EUROfusion ITER Physics Programme, progress on the calibration of diagnostics in the machine, and the test deployment of a WEST inspection robot inside of the EAST tokamak.
WEST stands for (W Environment in Steady-state Tokamak), where "W" is the chemical symbol of tungsten. The Institute for Magnetic Fusion Research is modifying the Tore Supra plasma facility to become a test platform open to all ITER partners.
Read the eighth issue of the WEST Newsletter here.