Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
On Friday 14 November, the first Highly Exceptional Load (HEL) destined to the ITER site was loaded onto the container ship CMA-Ivanhoe in the port of Busan, South Korea, to begin its five-week journey to France.
On board is the 87-ton main body of one high voltage substation transformer unit (part of the ITER steady state electrical network) as well as 39 wooden crates packed with the transformer's auxiliary components. The equipment was procured by the US and manufactured by Hyundai Heavy Industry in Ulsan, South Korea. Three identical transformers will be shipped to ITER in the coming months.
Ivanhoe should reach the Mediterranean harbour of Fos-sur-Mer on 19 December. There, the transformer main body will be unloaded and staged until 9 January 2015, when it will be transferred to a trailer.
The trailer will be loaded onto a barge to cross the inland sea Étang-de-Berre before travelling 104 kilometres along the ITER Itinerary, for delivery to the ITER site in the early hours of 14 January.
FuseNet, the European platform to coordinate and improve fusion education, has launched a new student support scheme in cooperation with and funded by the EUROfusion consortium:
- Support for Master students to go abroad for an internship in a fusion group or at a research institute.
- Support for Master and PhD students to follow educational training activities external to their own organisation (such as summer schools, master classes and workshops with a dominant educational character).
- Support for PhD students to take part in research at another universities' fusion group or at a research laboratory for shorter periods than a full internship.
Being a member of FuseNet, the ITER Organization is entitled to make use of this very attractive scheme by offering internships at ITER or research trips for PhD students.
For more information please check the FuseNet website.
Some 135 researchers, graduate students, and staff members from the Princeton Plasma Physics Laboratory (PPPL, US)) joined 1,500 research scientists from around the world at the 56th annual meeting of the American Physical Society Division of Plasma Physics Conference from 27 to 31 October in New Orleans.
Topics in the sessions ranged from waves in plasma to the physics of ITER and women in plasma physics. Dozens of PPPL scientists presented the results of their cutting-edge research in magnetic fusion and plasma science. There were about 100 invited speakers at the conference, more than a dozen of whom were from PPPL.
Read the full article and access the topical press releases on the PPPL website.
Hole in one: Centre stack smoothly installed in NSTX-U
Hole in one: Centre stack smoothly installed in NSTX-U
With near-surgical precision, technicians at the Princeton Plasma Physics Laboratory (PPPL, US) hoisted the 29,000-pound (13,000-kilo) centre stack for the National Spherical Torus Experiment-Upgrade, NSTX-U, over a 20-foot (6-metre) wall and lowered it into the vacuum vessel of the fusion facility. The smooth operation on 24 October capped more than two years of construction of the centre stack, which houses the bundle of magnetic coils that form the heart of the $94 million (EUR 19 million) upgrade.
"This was really a watershed moment," said Mike Williams, the head of engineering and infrastructure at PPPL and associate director of the Laboratory. "The critical path [or key sequence of steps for the upgrade] was fabrication of the magnets, and that has now been done."
The lift team conducted the final steps largely in silence, attaching the bundled coils in their casing to an overhead crane and guiding the 21 foot-long (6.4-metre) centre stack into place. The clearances were tiny: the bottom of the casing passed just inches over the shielding wall and the top of the vacuum vessel. Inserting the centre stack into the vessel was like threading a needle, since the clearance at the opening was only about an inch. Guidance came chiefly from hand signals, with some radio communication at the end.