Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
In November 2006, the last LHC dipole and quadrupole cold masses arrived at CERN, signalling the end of the industrial construction of the major components of the new 27-km particle collider (CERN CourierOctober 2006 p28 and January/February 2007 p25).
The LHC then entered the installation and the commissioning phases. In the same month, at the Elysée Palace in Paris, the ITER Agreement was signed by seven parties: China, the EU, India, Japan, Korea, Russia and the US. The Agreement's ratification in October of the following year marked the start of a new mega-science project — ITER ... that in many respects is the heir of the LHC.
Both machines are based on, for example, a huge superconducting magnet system, large cryogenic plants of unmatched power, a large volume of ultra-high vacuum, a complex electrical powering system, sophisticated interlock and protection systems, high-technology devices and work in highly radioactive environments.
The University of Wisconsin Fusion Technology Institute, founded in 1971, has been a leader in fusion and plasma physics research, with a broad range of basic science, engineering, and applications programs.
The Institute has done pioneering experimental work using advanced helium-3 fuel to produce fusion energy. Dr. Kulcinski is the Director of the Institute, Associate Dean for Research in the College of Engineering, and Grainger Professor of Nuclear Engineering. He has led a scientific team which has doggedly pursued, and tirelessly promoted, research into the advanced fusion fuels, such as helium-3, which will create the energy for the future.
For its fourth edition, the Low Carbon Earth Summit confirmed its role as a major annual event attracting an international audience concerned by—and involved in—the issue of sustainable development. About 1,000 participants from all over the world, two Nobel Laureates, and a hundred of presenters were present from 21 to 23 September in Qingdao, China; from a quantitative point of view the event was clearly successful.
And from a qualitative point of view as well, as the conference convincingly showed that we have entered a new age. Many examples of technological developments were presented that result or will result in a net decrease in carbon emissions.
The diversity of low-carbon initiatives around the world is absolutely impressive. Adaptation and mitigation of climate change are now embedded at all levels at the society (technology, law, education) and in all countries. In Australia, for example, the government has begun approaching groups that will be affected by the rise in ocean level to explore the possible actions. In China, Oxfam is conducting pilot projects in rural areas in order to evaluate the resilience of the food system and the vulnerability of the poorest to climate change. Legislation and law also need to be adapted. Studies conducted in several countries by the Swedish lawyer Peter Lohmander show that forests can be exploited in a sustainable way provided that regulations are modified. Many initiatives have been taken across all countries in educating people and raising public awareness. Hence the diversity of the participant's profiles: there are not many conferences today where you can find at the same table a lawyer, an economist, a farmer, a physicist and an entrepreneur.
Against this backdrop, I presented ITER as a genuine disruptive and innovative technology that is likely to change the course of our civilization.
As the world's most populated country and a key economic actor, China was obviously the focus of many discussions. During the opening session two Nobel Prize winners in economics, Edward Prescott (2004) and Sir Christopher Pissarides (2010), showed that the future of the Chinese "economic miracle" will depend on the government's capacity of reforming the country's economic institutions and significantly deregulating its services industry.
In this respect, said Sir Christopher, China has a historical opportunity "not make the same mistake as many European countries." The 2010 Nobel Prize winner added that he saw "China's opportunities in the globalized world as high technology manufacturing. Its research system is now mature enough to really start innovating."
-Michel Claessens, head of ITER Communication & External Relations
On 18 September, three trucks arrived from Italy loaded with equipment for ITER's Steady State Electrical Network (SSEN). The high voltage disconnectors and earthing switches were procured by the Princeton Plasma Physics Laboratory (PPPL), which serves as the SSEN engineering support subcontractor to the US Domestic Agency, and manufactured by the Italian branch of Alstom.
As the international ITER project to develop an experimental nuclear fusion reactor eats into research budgets around the world, an advisory panel to the US Department of Energy recommends mothballing at least one of three major experiments and focusing on research necessary to bring ITER online.
The Fusion Energy Sciences Advisory Committee (FESAC) released its report on 22 September at a meeting in Gaithersburg, Maryland. The document outlines a 10-year plan for US nuclear fusion research for various budget scenarios, the most optimistic of which calls for "modest growth".
Nuclear fusion offers the potential for producing practically limitless energy by smashing heavy atoms of hydrogen into helium inside a burning 100-million-kelvin plasma and capturing the energy released by the reaction — but scientific and engineering challenges remain.
The report says the US should focus research initiatives on the biggest impediments to ITER's donut-like design, called a tokamak — how to control the writhing plasma at the reactor's core, and understanding how it interacts with surrounding material in order to engineer walls that can maintain the reaction.
Researchers at Sandia National Laboratories' Z machine have produced a significant output of fusion neutrons, using a method fully functioning for only little more than a year. [...]
The experimental work is described in a paper to be published in the Sept. 24 Physical Review Letters online. A theoretical PRL paper to be published on the same date helps explain why the experimental method worked. The combined work demonstrates the viability of the novel approach.
"We are committed to shaking this [fusion] tree until either we get some good apples or a branch falls down and hits us on the head," said Sandia senior manager Dan Sinars. He expects the project, dubbed MagLIF for magnetized liner inertial fusion, will be "a key piece of Sandia's submission for a July 2015 National Nuclear Security Administration review of the national Inertial Confinement Fusion Program."
Inertial confinement fusion creates nanosecond bursts of neutrons, ideal for creating data to plug into supercomputer codes that test the safety, security and effectiveness of the U.S. nuclear stockpile. The method could be useful as an energy source down the road if the individual fusion pulses can be sequenced like an automobile's cylinders firing.