Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
43-minute program on nuclear fusion: BBC Radio 4 "In Our Time"
43-minute program on nuclear fusion: BBC Radio 4 "In Our Time"
Melvyn Bragg from "In Our Time" and his guests discuss nuclear fusion, the process that powers stars. In the 1920s physicists predicted that it might be possible to generate huge amounts of energy by fusing atomic nuclei together, a reaction requiring enormous temperatures and pressures. Today we know that this complex reaction is what keeps the Sun shining. Scientists have achieved fusion in the laboratory and in nuclear weapons; today it is seen as a likely future source of limitless and clean energy.
Guests:
Philippa Browning, Professor of Astrophysics at the University of Manchester
Steve Cowley, Chief Executive of the United Kingdom Atomic Energy Authority
Justin Wark, Professor of Physics and fellow of Trinity College at the University of Oxford
Producer: Thomas Morris.
Listen to the 43-minute program that aired on 30 October 2014 (9:30 p.m.) here.
Where else would you like to study fusion science and engineering but in the heart of the Eternal City?
The second oldest public university in Rome, the University of Rome "Tor Vergata," has offered a Second Level Master course in Fusion Energy Science and Engineering since 2012. Open to postgraduates with a Master's degree or equivalent title, the course aims to train experts in the areas of machine operation, experimental practice both in magnetic confinement and inertial fusion, and fusion technology and engineering.
The next course starts on 2 February 2015. The duration of the course is one academic year but it can be extended to two academic years according to individual study plans.
Enrolment is open now. For more information, see the dedicated website, or contact:
Using radio waves to control the density in a fusion plasma
Using radio waves to control the density in a fusion plasma
Recent fusion experiments on the DIII-D tokamak at General Atomics (California, US) and the Alcator C-Mod tokamak at MIT (Massachusetts, US), show that beaming microwaves into the centre of the plasma can be used to control the density in the centre of the plasma, where a fusion reactor would produce most of its power. Several megawatts of microwaves mimic the way fusion reactions would supply heat to plasma electrons to keep the "fusion burn" going.
The new experiments reveal that turbulent density fluctuations in the inner core intensify when most of the heat goes to electrons instead of plasma ions, as would happen in the center of a self-sustaining fusion reaction. Supercomputer simulations closely reproduce the experiments, showing that the electrons become more turbulent as they are more strongly heated, and this transports both particles and heat out of the plasma.
"We are beginning to uncover the fundamental mechanisms that control the density, under conditions relevant to a real fusion reactor," says Dr. Darin Ernst, a physicist at the Massachusetts Institute of Technology, who led the experiments and simulations, together with co-leaders Dr. Keith Burrell (General Atomics), Dr. Walter Guttenfelder (Princeton Plasma Physics Laboratory), and Dr. Terry Rhodes (UCLA).
--Supercomputer simulation shows turbulent density fluctuations in the core of the Alcator C-Mod tokamak during strong electron heating. Credit: D. R. Ernst, MIT
Scientists use plasma shaping to control turbulence in stellarators
Scientists use plasma shaping to control turbulence in stellarators
Researchers at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute of Plasma Physics in Germany have devised a new method for minimizing turbulence in bumpy donut-shaped experimental fusion facilities called stellarators. This month in a paper published in Physical Review Letters, these authors describe an advanced application of the method that could help physicists overcome a major barrier to the production of fusion energy in such devices, and could also apply to their more widely used symmetrical donut-shaped cousins called tokamaks. This work was supported by the DOE Office of Science.
Turbulence allows the hot, charged plasma gas that fuels fusion reactions to escape from the magnetic fields that confine the gas in stellarators and tokamaks. This turbulent transport occurs at comparable levels in both devices, and has long been recognized as a challenge for both in producing fusion power economically.
"Confinement bears directly on the cost of fusion energy," said physicist Harry Mynick, a PPPL coauthor of the paper, "and we're finding how to reshape the plasma to enhance confinement."
The new method uses two types of advanced computer codes that have only recently become available. The authors modified these codes to address turbulent transport, evolving the starting design of a fusion device into one with reduced levels of turbulence. The current paper applies the new method to the Wendelstein 7-X stellarator, soon to be the world's largest when construction is completed in Greifswald, Germany.
Results of the new method, which has also been successfully applied to the design of smaller stellarators and tokamaks, suggest how reshaping the plasma in a fusion device could produce much better confinement. Equivalently, improved plasma shaping could produce comparable confinement with reduced magnetic field strength or reduced facility size, with corresponding reductions in the cost of construction and operation.
New Advisory Board to promote project and safety culture at ITER
New Advisory Board to promote project and safety culture at ITER
In order to improve project performance and in light of the ITER Project's specific managerial and cultural complexities, an External Management Advisory Board (EMAB) was established earlier this year. This week, the members of the EMAB convened for their first meeting at ITER Headquarters.
The objective of the EMAB is to advise the ITER Organization's senior managers and the Director-General on enhancing project and safety culture, a challenging activity in the context of a mega international project with seven Members. Also, the Board is charged with assessing the practical implementation of the set of actions that was decided in response to the Management Assessment carried out in 2013.
The Chair of this new entity is Jean Jacquinot, who also serves as scientific advisor to the Chairman of the French Alternative Energies and Atomic Energy Commission (CEA), Bernard Bigot.
Other Board members are Michael Tendler, professor at Sweden's Alfvén Laboratory (Royal Institute of Technology); Richard Hawryluk, head of the department of ITER and Tokamaks at the Princeton Plasma Physics Laboratory (US); Dhiraj Bora, director of the Institute for Plasma Research, IPR (India); and Yuanxi Wan, Academician of the Chinese Academy of Sciences and former Chairman of the ITER Science and Technology Advisory Committee (STAC). ITER's Colette Ricketts, of the System Management Section, is in charge of the secretariat.
"During our first meeting held on 20-21 October, we had a very fruitful discussion," the Board members reported after the first meeting. "We openly addressed issues such as the project's nuclear and safety culture, options for improved alignment between the ITER Organization and the Domestic Agencies, and last but not least the creation of the ITER Chief Executive Team, (ICET), formed to improve collaboration between all actors of the ITER Project."
The Board will continue to address key ITER management issues at its next meeting, scheduled for 11-12 December 2014.