Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
The European Domestic Agency, with responsibility for the construction of the 39 buildings of the ITER installation, launched its first video on YouTube four years ago. Since then, over 100,000 viewers have followed its regular postings on site progress, industry collaboration and manufacturing.
An exposition on ITER is running from now until 8 June at the Cité des Sciences (Parc de la Villette, Paris). Combining different media—display panels, videos, interviews—the exposition is designed to interest a wide public, including a younger audience.
See the Cité des Sciences website for more information (in French).
Researchers of the FOM Institute DIFFER have discovered that the wall material of a fusion reactor can shield itself from high energy plasma bursts. The wall material tungsten seems to expel a cloud of cooling hydrogen particles that serves as a protective layer. The research team publishes their results on 24 March 2014 in the journal Applied Physics Letters.
[...] The heart of a fusion reactor like ITER contains an extremely hot plasma, from which short, intense energy bursts rain down on the reactor wall. In ITER, the tungsten wall will face powerful discharges of several gigawatts per square meter, several times per second. However, researchers at FOM Institute DIFFER discovered that under some conditions less than half of that incoming energy actually hits the surface.
The physicists used their linear plasma experiment Pilot-PSI to show that the tungsten surface shields itself from the blast by expelling a cloud of cooling hydrogen particles. This is the first time that fusion researchers see the energy pulses and the wall react to each other at this level of detail.
Caption: Hydrogen plasma in DIFFER's linear plasma generator Pilot-PSI. Credit: Fundamental Research on Matter (FOM)
With a combined morning and evening circulation of more than 14 million, the Japanese daily Yomiuri Shimbun is number one among the world's biggest selling newspapers.
Last Friday 21 March the Yomiuri dispatched one of its science reporters, Kyoichi Sasazawa, to the ITER site. The reporter met with ITER Director-General Osamu Motojima and ITER DDG Carlos Alejaldre and visited the ITER construction site. "In Japan, knowledge of fusion needs to be improved," he observed.
The article he's preparing will be published in Japan in late April and will also appear in the English edition of the Yomiuri.
Caption: DG Motojima and Yomiuri science writer Kyoichi Sasazawa take in the Tokamak Pit view from the Assembly Hall slab.
25 years ago: "The scientific fiasco of the century"
25 years ago: "The scientific fiasco of the century"
Twenty five years ago, University of Utah scientists announced a discovery that touched off a worldwide sensation.
"Basically, we've established a sustained nuclear fusion reaction by means which are considerably simpler than conventional techniques," said Professor Stanley Pons on 23 March 1989. He was describing an experiment on the Utah campus that sent waves of optimism around the globe.
Some thought so-called "cold fusion" would solve the world's energy problems and lead to widespread peace and prosperity. But it wasn't long before those hopes crumbled. At least one prominent scientist later denounced it as "the scientific fiasco of the century."