Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Ronald C. Davidson, a pioneering plasma physicist for 50 years who directed the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) during a crucial period of its history and was a founding director of the Plasma Fusion Center at the Massachusetts Institute of Technology (MIT), passed away on 19 May at his home in Cranbury, New Jersey. He was 74.
"Ron was an anchor for the Laboratory both through his science and through his wisdom," said Stewart Prager, director of PPPL. "His prodigious contributions not just to PPPL's science but also to plasma physics writ large are clear and widely known. Within the Laboratory, he was a mentor and a guide to people young and old. His impact within the Laboratory was enormous."
The physicist won numerous honours in his lifetime, including the prestigious James Clerk Maxwell Prize in Plasma Physics in 2008, the highest national honour in plasma physics. He was a fellow of both the American Physical Society and the American Association for the Advancement of Science. Davidson was known as a prolific researcher, writer and academic.
Read the full-length obituary on the PPPL website.
On the last day of her state visit to France, South Korea's President Park Geun-hye stopped in Grenoble, a city in the French Alps where she studied in the mid-1970s after graduating from South Korea's Sogang University.
Nostalgia wasn't the only reason for this last stop, however. The South Korean President wished to visit the Air Liquide plant in Sassenage, where hydrogen fuel cell vehicles are being developed in cooperation with the Korean automaker Hyundai Motor Co.
Also of interest to President Park were the ITER cold boxes that are currently being equipped with internal components before integration into the ITER cryoplant.
One of the three ITER cold boxes (21 metres long, 4.2 metres in diameter) provided a spectacular background to the presentation of the company's activities by Xavier Vigor, Air Liquide advanced Technologies CEO. Also present were Benoît Potier, Air Liquide Chairman and Chief Executive Officer, and Pierre-Etienne Franc, Vice President of Advanced Business & Technologies.
It was the second time the ITER cold boxes were in presidential company: in August 2015 French President Hollande also made a stop at the Air Liquide plant and even signed cryoplant cold box number two ...
--Photo courtesy of Air Liquide
Click here for an article in the Korea Times and here to watch a video on French public TV.
Simulations support alternative plasma start technique
Simulations support alternative plasma start technique
New computer simulations at the Princeton Plasma Physics Laboratory (PPPL) indicate that an innovate start-up technique for tokamaks, called coaxial helicity injection (CHI), may support a strong electric current without a traditional solenoid magnet.
In tokamaks, a complex web of magnetic fields control the superhot plasma. In addition to large D-shaped magnets surrounding the vacuum vessel, a central electromagnet known as a solenoid participates in creating the twisting vortex that prevents the plasma from touching the tokamak's walls.
Compact spherical tokamaks, like the NSTX-U recently dedicated at PPPL, as well as future tokamaks may not have room for solenoids. During CHI, magnetic field lines, or loops, are inserted into the tokamak's vessel through openings in the vessel floor. The field lines then expand to fill the vessel space, like a balloon inflating with air, until the loops undergo a process known as magnetic reconnection and snap closed. The newly formed closed field lines then induce current in the plasma.
"Can we create and sustain a big enough magnetic bubble in a tokamak to support a strong electric current without a solenoid?" asks Physicist Fatima Ebrahimi, who performed the computer simulations. "The findings indicate that 'yes, we can do it.'"
In line with a First Plasma in 2017, the 41-tonne vacuum vessel of the MAST Upgrade project was returned to its concrete-shielded home in late May, where it can now be refitted with its components and systems before commissioning.
The upgraded MAST tokamak will help to add to the knowledge base for ITER by experimenting with key plasma physics issues.
Watch a short video of the milestone on the website of the Culham Centre for Fusion Energy (UK).