Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
The world of fusion energy is a world of extremes. For instance, the center of the ultrahot plasma contained within the walls of doughnut-shaped fusion machines known as tokamaks can reach temperatures well above the 15 million degrees Celsius core of the sun. And even though the portion of the plasma closer to the tokamak's inner walls is 10 to 20 times cooler, it still has enough energy to erode the layer of liquid lithium that may be used to coat components that face the plasma in future tokamaks. Scientists thus seek to know how to prevent hot plasma particles from eroding the protective lithium coating.
Physicist Tyler Abrams has led experiments on a facility in the Netherlands called Magnum-PSI that could provide an answer. The research, published in NuclearFusion in December 2015, found that combining lithium with the hydrogen isotope deuterium substantially reduced the erosion. Abrams conducted the research as a doctoral student in the Princeton Program in Plasma Physics substantially based at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). He currently is a postdoctoral research fellow at General Atomics. The research was funded by the DOE Office of Science.
The European Domestic Agency has developed a new numerical model that represents ITER's 18 toroidal field magnets with remarkable detail. The model will be used to compute the magnetic fields produced by the coils and the resulting electromagnetic forces on the magnet system, which are the result of the interaction between electrical currents and the magnetic field.
"It's the first time we have a complete model of the entire ITER toroidal field system to such a level of detail," says Gabriele D'Amico, the technical support officer responsible for the development of the model. "The level of complexity of the tool is outstanding. For example there are more than 1,500 bolts connecting the different pieces of the toroidal field magnet system, and the model allows us to predict the behaviour of each one during operations."
The model, which took six months to develop, will allow the European Domestic Agency and the ITER Organization to simulate different scenarios using an approach that integrates the 18 coils and all major subsystems. Scientists will be able to study the occurrence of an electrical fault during operation, for example, or the impact of possible misalignment in the assembly of the coils on the behaviour of the whole system.
Read the full article on the European Domestic Agency website.