Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Six members of the Korean National Assembly visited ITER on 7 January, accompanied by the head of the Korean Domestic Agency for ITER, Kijung Jung. After a tour of the construction site, which they qualified as "impressive," the delegates were welcomed by ITER Director-General Osamu Motojima who was pleased to have the chance to thank the delegation members for Korea's contribution to the Project and constant support.
During a recent visit to the Budker Institute in Novosibirsk, Russia, Paul Thomas, CODAC, Heating & Diagnostics Directorate head from the ITER Organization, signed two Complementary Diagnostics Procurement Arrangements with the Deputy Director General of Rosatom, Vyacheslav Pershukov.
The Budker Institute is already heavily engaged in the engineering of diagnostic systems in the vacuum vessel ports following a Procurement Arrangement signed in August 2013.
The year 2014 has been announced as the Year of Fusion by the Russian state corporation Rosatom. Industrial engagement in ITER component manufacturing is ramping up at different locations in Russia; Saint Petersburg will be hosting in June the Fourteenth Meeting of the ITER Council; and in October the 25th Fusion Energy Conference, organized by the International Atomic Energy Agency, will be held in the same city.
ITER will benefit from 100 gigabits/s transatlantic connection
ITER will benefit from 100 gigabits/s transatlantic connection
Karlsruhe Institute of Technology (KIT) researchers have established the first international 100 gigabits/s connection for German science. It will be the basis of better cooperation in data-intensive sciences in the future. At the SC13 International Supercomputing Conference in Denver, KIT's Steinbuch Centre for Computing (SCC) successfully demonstrated this technology.
"As in an orchestra we have now combined the various instruments such that this record speed from end user to end user can be used for the first time in German science," says Professor Dr. Bernhard Neumair, Managing Director of SCC. Interaction of user software and connecting stations was controlled and optimized for this purpose.
The connection is to foster the development of advanced network technologies and to support data-intensive high-end projects, such as the experiments at the LHC in Geneva, at the ITER fusion reactor in France, and in other international programs.
The Princeton Plasma Physics Laboratory (PPPL) has released "Star Power," a new informational video that uses dramatic images and thought-provoking interviews to highlight the importance of the laboratory's research into magnetic fusion.
Through original music, graphics, live footage and photographs, the video explains fusion, its potential as an abundant renewable energy source and the lab's efforts to harness that energy for widespread use.
The video features 19 PPPL members, including Stewart Prager, director of the lab and a Princeton University professor of astrophysical sciences, and a host of additional scientists, engineers and technicians.
It also includes individuals outside the lab speaking about fusion, from US President Barack Obama to the actors on the television sitcom "The Big Bang Theory."
Biography of one of the 20th century's greatest physicists
Biography of one of the 20th century's greatest physicists
One of the greatest and most versatile scientists of the twentieth century, Hans Bethe (1906-2005), is portrayed in a new biography Nuclear Forces: The Making of the Physicist Hans Bethe by Silvan Schweber.
The sheer magnitude of Bethe's scientific accomplishments range across almost every field of theoretical physics; he was probably the last "universalist", a man who could solve virtually any physics problem that came his way.
It was at the end of the 1930s that he made his most lasting contribution — an explanation of the origin of the sun's energy generated through nuclear fusion. As Schweber tells us, Bethe was inspired to solve this problem during a conference, working out the essential details in short order. This was one of those puzzles that scientists had grappled with for more than a hundred years and Bethe solved it in a characteristically direct way. For this achievement he was awarded the Nobel Prize.
Dr. Saša Novak, a researcher at the Jožef Stefan Institute (Ljubljana, Slovenia) and an active member of the Slovenian Fusion Association, has been presented with the Zois Award in recognition of her scientific achievements in the field of materials. The Zois Award, awarded annually, is the highest national prize awarded for lifetime achievements in science.
The award cited Dr Novak's scientific work on the colloidal processing of composite materials, in particular the achievement of her group in developing a ceramic composite for the first-wall blanket in future fusion reactors.
Dr. Novak has been involved in fusion research since the establishment of the Slovenian Fusion Association in 2005. Besides investigating and developing fusion-relevant materials, SiC/SiC and W-based composites, she is also active in the area of public information. She is a member of the Public Information Network (PIN) and a member of the Coordination Team of the Fusion Expo.
What would happen if ocean water was replaced with deuterium oxide?
What would happen if ocean water was replaced with deuterium oxide?
Deuterium oxide has properties that are quite different from light water, the normal water we deal with every day. In general, it will be more dense, have a higher freezing point and boiling point, higher viscosity, higher activity, and most importantly, a higher heat of vaporization and heat of fusion. Check out this chart on Wikipedia to compare the differences.
If the change happened suddenly, then there would be all sorts of problems...