Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
One of the most flexible and highly instrumented fusion research reactors in the world is undergoing major enhancements that will pave the way to future fusion power plants.
The DIII-D National Fusion Facility is the largest magnetic fusion experiment in the United States. In May, work began on a series of machine enhancements that will make it possible to commence new studies of the physics of future fusion reactors. That will help scientists understand how to achieve high fusion power in the ITER and how to sustain such regimes indefinitely in the fusion power plants that will follow ITER.
The planned year-long activity will enhance DIII-D systems by adding increased and redirected particle beams and radio frequency systems to drive current and sustain the plasma in a so-called "steady state." The improvements will also expand capabilities with the installation of new microwave systems to explore burning-plasma-like conditions with high electron temperatures. This will allow researchers to explore how to achieve higher pressure and temperatures while increasing control of the plasma, conditions critical to sustained fusion operation.
See the recent press release on the General Atomics website.
Scientists at Oxford University, in collaboration with the University of California Santa Barbara, are studying the impact of radiation on the properties of materials. Through their research, they hope to contribute to developing better, more resilient materials for nuclear fusion.
See this animation by Oxford Sparks to get an insight into how it is done.
Are you a university graduate in the field of nuclear engineering, physics, administration or communication? Do you want to put your academic experience into practice at ITER, the most ambitious international energy project? Then this traineeship may be for you. The European Domestic Agency for ITER is looking for physicists, engineers, lawyers, communicators and experts in human resources, finance and procurement who are interested in hands-on experience in an exciting international and multicultural environment.
The traineeship is paid and will last from between four to nine months starting in October 2018 at any of the three locations: Barcelona, Spain; ITER site (France); or Garching, Germany. The deadline for applications is 25 June 2018.
For more information and a complete list of opportunities click here.