Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
THE sun has thrown us a fractal surprise. An unexpected pattern has been glimpsed in the solar wind, the turbulent plasma of charged particles that streams from the sun. It offers clues for handling plasmas that roil inside nuclear fusion reactors on Earth.
Composed of charged particles such as protons and electrons, the solar wind streams from the sun and pervades the solar system. Its flow is turbulent, containing eddies and moving at different speeds in different directions. It was thought that this turbulence was similar to that in a fluid, behaving like mixing ocean currents or the air flows that make aeroplane flights bumpy.
Read the whole article on the New Scientist website.
As climate change becomes a serious national security threat, we must look to the future for a clean, safe and sustainable source of energy for our future. The ITER experiment will be the largest ITERexperimental tokamak nuclear fusion reactor, located at Cadarache, France. Through ITER, we can find solutions to control fusion energy, so that it can be commercialized to provide the world with a sustainable energy source. This project was born in 1985 in hopes of peace through energy cooperation between the superpowers of the Soviet Union and the U.S.
Today, its members include China, the European Union, India, Japan, the Republic of Korea and the United States of America. With recent controversy over the mismanagement of the ITER structure, the U.S. has reevaluated its position in funding the ITER project. If the U.S. withdraws from the project, we will fall behind in energy research and will not be able to reap theITER numerous benefits that ITER offers. Below I state the top ten reasons why ITER is beneficial for the United States.
- By Kathy Duong, Research Assistant at the American Security Project
Spaghetti-thin shoelaces, sturdy hawsers, silk cravats — all are routinely tied in knots. So too, physicists believe, are water, air and the liquid iron churning in Earth's outer core. Knots twist and turn in the particle pathways of turbulent fluids, as stable in some cases as a sailor's handiwork. For decades, scientists have suspected the rules governing these knots could offer clues for untangling turbulence — one of the last great unknowns of classical physics — but any order exhibited by the knots was lost in the surrounding chaos.
Now, with deft new tools at their fingertips, physicists are beginning to master the art of tying knots in fluids and other flowable entities, such as electromagnetic fields, enabling controlled study of their behavior. "Now that we have these knots, we can measure the shape of them in 3-D; we can look at the flow field around them," said William Irvine, a physicist at the University of Chicago. "We can really figure out what the rules of the game are."
On April 23 the General Assembly of European Fusion Research Units appointed Tony Donné as Programme Manager for the consortium EUROfusion, which is currently being set up. EUROfusion is to succeed the European Fusion Development Agreement (EFDA) as the umbrella organization of Europe's fusion research laboratories. At the moment, Tony Donné is head of the fusion physics theme at the Dutch Institute for Fundamental Energy Research (DIFFER). Starting 2 June, he will manage EUROfusion's execution of the European Fusion Roadmap, which aims to realize commercial energy from fusion.