Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
The third edition of Introduction to Plasma Physics and Controlled Fusion by author Francis F. Chen is now available from Springer (follow this link). In addition to updates in all chapters, the 2016 release includes new chapters on special plasmas and plasma applications.
A recent Chinese version of the 1973 edition of the book is also available here.
With transparent skies and 300 days of sunshine a year, the tiny Alpine village of Saint-Véran (alt: 2,042 metres) offers a unique viewpoint on our own familiar fusion furnace. In the 1970s professional astronomers from the Observatoire de Paris used it to observe the Sun's corona with instruments they eventually donated to the village.
Walking in the scientists' footsteps, the local population soon developed a passion for solar astronomy—an amateur club was created, more instruments were acquired through donations and the municipality soon decided to capitalize on its privileged relationship with the Sun.
La Maison du Soleil was inaugurated on Thursday 9 June in the presence of French Vice-Minister for Higher Education and Research, Thierry Mandon, and of ITER Director-General Bernard Bigot.
Designed for the general public, La Maison du Soleil will organize exhibits, conferences and solar observations. Nuclear fusion and ITER are of course part of the permanent exhibit, with posters, panels ... and even a conductor sample provided by the ITER Magnets Division.
Saint-Véran is located in the heart of the Queyras Regional Park, two-and-a-half hours north of ITER.
While the fusion community continues its quest to harness fusion for energy needs, numerous spin-off benefits are resulting from the research carried out all over the world.
Given its complex, multidisciplinary nature, it should be no surprise that fusion research has driven advances in disciplines ranging from medical technology and environment to astrophysics and material sciences. EUROfusion, the European Consortium for the Development of Fusion Energy, has identified some of these spin-offs and put together a non-exhaustive list that demonstrates the short-term benefits of fusion research on the way to fusion electricity.
Read more about them on the EUROfusion website or download an infographic.
Two types of cameras will be needed inside of the ITER vacuum vessel to support inspection and maintenance operations—oversight cameras that give engineers a broad view inside the vacuum vessel, and cameras embedded on tooling or robotics for a view inside tightly confined spaces.
The European Domestic Agency for ITER is working with industry to develop purpose-built equipment small enough to fit into tight space constraints and capable of withstanding the harsh conditions close to the plasma.
In a project called FURHIS (for FUsion for Energy Radiation Hard Imaging System), Europe is collaborating with Oxford Technologies (UK) to produce mockups of sub-systems that will soon be tested in a radiation environment. Working with French laboratories ISAE (image sensors), CEA (LED illumination system), and Université Jean Monnet (optic system), a 15 mm mockup—small enough to fit inside a one euro coin—has been developed.
The FURHIS sub-systems will now be tested at the Belgian Nuclear Research Centre SCK•CEN.
Read the original story on the European Domestic Agency website.