Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
If only it were possible to read minds. It would have been interesting to know what that particular visitor was thinking as he leaned over the fence to stare down into the busy Tokamak Complex construction area, with its massive rebar and concrete structures. Perhaps how ITER is taking shape, after all these years...
Academician Evgeny Velikhov, current President of the Kurchatov Institute in Moscow, is one of the masterminds behind the ITER Project. He helped to initiate the project at the highest political level by persuading Secretary-General Mikhail Gorbachev that the next generation of fusion device needed to be a joint international effort. He was ITER Council Chair during the technical design phase for ITER and again at the start of ITER construction from 2010-2012.
Academician Velikhov was on-site to attend the sixteenth ITER Council meeting held at Headquarters from 17 to 18 June, but for now it was time to see how construction was progressing. Escorted by the acting head of the ITER Tokamak Engineering Department, Alexander Alekseev, as well Section Leader Igor Sekachev, Velikhov—now in his eighties—was able to take full measure of the road travelled as he looked over the 42 hectare construction site spread out before him.
Back at Headquarters, he quickly removed the obligatory safety shoes and safety equipment to meet some of the Russian staff members at ITER before returning later that day to Moscow.
In this five-minute video produced by the European Domestic Agency for ITER, the type of specialized robotics, networks and virtual reality techniques used in deep sea or space operations find their application for ITER, where remote handling will be used to perform maintenance, inspection and repair tasks.
The European agency is responsible for delivering four remote handling systems to ITER: the divertor remote handling system, the neutral beam remote handling system, the cask transfer system for activated components, and the in-vessel viewing and metrology system—in all, about EUR 250 million of investment.
Recently, conclusive tests were carried out at the VTT Technical Research Centre in Tampere, Finland for the remote handling of ITER divertor cassettes—10-ton components that must be installed and/or exchanged through high-tech robotics.