Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Testing the thermal tolerance of the fusion reactors of the future
Testing the thermal tolerance of the fusion reactors of the future
Nuclear fusion is an attractive option for creating sustainable energy, in principle using the same reactions found at the centre of stars to generate large quantities of power without carbon emissions.
But creating those conditions on Earth is difficult, and part of the problem is finding the correct materials to contain the fierce reactions.
The most common approach is to magnetically contain the high-energy particles, known as a plasma, in a tight circle running through the centre of a giant metal torus. This set-up is employed at the JET facility in Culham, just outside Oxford, as well as in the forthcoming ITER experiment in the south of France.
But even constrained by large magnetic fields, the plasma still subjects the walls of the vessel, likely to be made of tungsten, to extreme conditions.
Oxford University researchers, along with researchers from the Massachusetts Institute of Technology and the Culham Centre for Fusion Energy, have been carrying out experiments to investigate the effect of radiation on the properties of the material used in the walls and on the materials' thermal conductivity.
Adam Cohen succeeds Michael Knotek as Deputy Under Secretary for Science and Energy (US)
Adam Cohen succeeds Michael Knotek as Deputy Under Secretary for Science and Energy (US)
After nearly seven years as deputy director for operations at the US Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C. He succeeds Michael Knotek, who retired 30 September.
"I am very excited and humbled by the opportunity to take on this role," Cohen said. "I look forward to working with Secretary [Ernest] Moniz, Under Secretary [Lynn] Orr and all within the department, as well as across the complex, in supporting the research mission of the department and helping to ensure the vitality of the national laboratories."
Cohen's contributions to the Laboratory have been invaluable, said A.J. Stewart Smith, Princeton University vice-president for PPPL. "He evolved the management structure that we all enjoy today," Smith said. "He has been a superb colleague and will be sorely missed."
At PPPL, which recently completed construction of the $94 million National Spherical Torus Experiment-Upgrade, the Laboratory's major fusion experiment, Cohen has played many critical roles. As deputy director for operations, he was in charge of the upgrade and ran the indirect — or non-research — side of the Laboratory, whose departments range from engineering and infrastructure to information technology. He recently headed preparation of the Campus Plan, a 10-year program for modernizing the Laboratory whose first steps are under way, and set the Lab on its current path to a business system upgrade that will replace all financial software by 2018.
Cohen will make use of his fusion experience by heading the U.S. delegation to ITER, the international fusion experiment that is under construction in France. His contact with ITER will be at the international level; he will not be directly involved in the US ITER Project Office at Oak Ridge National Laboratory.
New clip revisits installation of the on-site transformers
New clip revisits installation of the on-site transformers
A new video clip produced by the European Domestic Agency revisits the installation of first four on-site transformers.
A total power of 1200 MVA will be made available to the ITER installation through two networks—the pulsed power electrical network (PPEN) that services the AC/DC converters, the heating and current drive systems, and the system for reactive power compensation, and the steady state electrical network (SSEN) which will provide power to the cryogenic and cooling water systems, the tritium plant and general infrastructure.
Four of seven transformers have been installed on the ITER site.
Watch the clip on the European Domestic agency website.