Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.
If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization. modification test
The 2015 roundup of news from the US ITER Project Office is now available online.
US ITER achieved a number of project "firsts" for delivery and fabrication over the last year. Deliveries to the ITER site included the first nuclear grade hardware (drain tanks) and the first highly exceptional load shipment to ITER (a 90-ton electrical transformer). The US also supplied the first plant components installed at the ITER site (a total of four transformers). On the fabrication side, US ITER shipped its first production toroidal field conductor to the coil manufacturer in Europe and has begun fabrication of the first central solenoid module.
Fusion in Europe is a regular magazine on the progress of fusion research published by the EUROfusion consortium. In the December 2015 issue, the magazine takes a look at ongoing preparations for the deuterium-tritium campaign at JET, at the research planned on the upgraded spherical tokamaks MAST (UK) and NSTX (US), and at topical program news from fusion laboratories all over Europe.
For the close of the year, EUROfusion—the European Consortium for the Development of Fusion Energy—is highlighting 24 cutting-edge technologies that have either benefited from, or are the by-products of, fusion research.
Superconducting magnets, low-activation heat-resistant materials, high-tech filters, sophisticated computer codes ... work being carried out around the world on fusion science and technology is pushing known technologies to new levels or breaking new ground for the benefit of many other sectors and, ultimately, society at large.
Follow the Spinoff Advent Calendar on EUROfusion's website.
Members of MIT's Plasma Science and Fusion Center (PSFC) community are cheering the start of a long-anticipated physics experiment at the Max Planck Institute for Plasma Physics in Greifswald, Germany. Two teams of PSFC researchers are collaborating on the Wendelstein 7-X device, the world's largest fusion experiment designed in the stellarator line of magnetic confinement fusion devices.
The PSFC has significant experience with a different configuration of magnetic confinement, having spent decades designing and running the Alcator series of high-magnetic-field tokamak experiments — the Alcator C-Mod device, located on campus, is the latest in that series. There are many similarities between the two designs, however.
Both the tokamak and the stellarator seek to harness the energy released from the fusion of hydrogen isotopes to provide clean and safe electrical power. Both use helical (spiraling) magnetic fields to contain the hot plasma fuel in a donut-shaped chamber. In a tokamak, this field is generated both by external electromagnets and a large electrical current that is driven in the plasma itself. Driving and sustaining this plasma current, and its impact on stability and transport of energy and particles, is a major focus of the research at MIT.
The stellarator concept takes a different approach. First invented by the noted astrophysicist and fusion pioneer Lyman Spitzer of Princeton University in 1950, the stellarator provides the entire helical field through external electromagnets formed in highly complex and twisted shapes.
Future experiments at W7-X will address the role that plasma turbulence plays in limiting overall performance, and PSFC researchers are working with the W7-X group to investigate this. One PSFC team — principal research scientist Jim Terry and postdoctoral researcher Seung-Gyou Baek — will develop a fast camera system for viewing light emitted from the plasma, and will make important measurements of turbulence near the edge of the plasma. The other team — physics professor Miklos Porkolab and staff scientist Eric Edlund — will develop a specialized interferometer for imaging density fluctuations deep in the hot plasma core. The issues surrounding turbulence are important in stellarators, as they are in tokamaks, since turbulence moves heat and particles across the confining magnetic field faster than would otherwise occur. Both teams expect to have first measurements during the 2017 experimental campaign.