ITPA Transport and Confinement Topical Group

Scope

The overall scope of the Transport and Confinement Topical Group is to explore and to develop a fundamental understanding of transport and confinement physics governing plasma performance, including that of ITER and burning plasmas in general. This scope includes: maintaining the confinement and L-H threshold databases, and augmenting them as necessary; developing an understanding of the basic processes controlling plasma particle, energy and momentum transport; supporting the identification of experiments, inter-machine comparisons and analysis to address critical transport issues; and facilitating the validation of physics-based ion and electron thermal transport models in support of developing a fully predictive transport capability that could be used for integrated scenario modelling. The group will interface as necessary with other Topical Groups on cross-cutting topics.

Tasks

The tasks of the Transport and Confinement Topical Group are broad-based, covering experiment, theory and modelling. The group will work not only on characterizing transport and confinement properties, but also towards developing physics-based models with the aim of using these models to predict performance in future devices. Topics in which the group will be active will depend on both the immediate needs of ITER and the interests of the group. The high-priority topical areas of interest, and possible specific topics for focused research, are:

  • Maintain confinement databases and augment these as necessary:
    • L-mode, H-mode, L-H and profile databases
  • Develop an improved characterization of the L-H transition threshold:
    • Species, toroidal field, density (including low density limits)
    • Effect of rotation on threshold power
    • Confinement enhancement just above threshold
  • Determine global confinement characteristics:
    • Effect of shape and edge stability on beta scaling of confinement
    • Confinement dependences in hybrid discharges
    • Effects of metal walls on confinement and transport
    • Impact of ELM control on core plasma performance, including plasma and impurity transport, rotation, etc.
    • Impact of Resonant Magnetic Perturbations (RMPs)—as a proxy for global magnetic field ripple—on confinement, local transport and rotation
  • Develop an improved characterization of particle and impurity transport:
    • Parametric dependences of density peaking over a wide range of conditions, including pellet injection
    • Local particle transport and pinch processes
    • Correlations between impurity and main ion density profiles
    • Impurity transport to address burn control issues
  • Determine electron thermal transport properties over a range of conditions:
    • Resolve role and importance of Electron Temperature Gradient (ETG) vs. coupled Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM)/ETG induced transport
    • Assess role of electromagnetic fluctuations in driving electron transport (low- and high-frequency)
    • Demonstrate and understand, through modelling and theory, the reduced electron transport regimes with dominant electron heating
  • Determine ion thermal transport properties over a range of conditions:
    • Understand the source of ion transport under various conditions, including regimes in which neoclassical transport dominates
    • Assess the role of rotation in suppression of low-k turbulence
    • Increase test/model validity to plasmas with ITBs and other enhanced confinement regimes
  • Improve characterization and understanding of momentum transport and plasma rotation:
    • Evaluate effects of rotation sources, especially with regard to intrinsic rotation
    • Determine momentum pinch velocity and its theoretical basis
    • Assess and understand effects of rotation on transport barrier formation
  • Improve characterization and understanding of barrier formation:
    • Assess rates of internal and edge barrier formation in support of ITER control system development (e.g., time scales)
    • Develop understanding of triggering mechanisms (e.g. rotation vs. q-shear)
  • Validate models:
    • Assess validity of physics-based transport models for basic understanding and in support of ITER scenarios
    • Incorporate turbulence measurements for comparison with synthetic diagnostics

Members

China
Ding Bojiang
Ding Siye
Liu Adi
Wang Aike
Xu Min
Xu Yuhong (Contact)
EU
Dif-Pradalier Guilhem
Garzotti Luca
Labit Benoit
Mc Dermott Rachael (Dep. Chair)
Pablant Novimir (Stell. Rep)
Pueschel M J
Tala Tuomas
Valisa Marco
India
Awasthi Lalit m
Ghosh Joydeep
Japan
Honda Mitsuru
Imadera Kenji
Narita Emi
Ohtani Yoshiaki
Tamura Naoki
Tanaka Kenji
Yoshida Maiko (Chair)
Korea
Jhang Hogun
Kim Chang-Bae
Kim Jin-Yong
Kwon Jae-Min (Contact)
Seol Jae-Chun
Russia
Kirneva Natalia (Contact)
Lebedev Sergey
Razumova Kseniya
Smirnov Dmitrii
Vershkov Vladimir
USA
Grierson Brian
Guttenfelder Walter
Petty Craig
Rice John
Staebler Gary (Contact)
Yan Zheng
ITER
Kim Sunhee (ITER Dep. Chair)

Experts

  • Angioni Clemente (EU)
  • Barnes Michael (EU)
  • Bonanomi Nicola (EU)
  • Callen James (US)
  • Camenen Yann (EU)
  • Chudnovskiy Alexander (RF)
  • Delabie Ephrem (EU)
  • Dong Jiaqi (CN)
  • Ferreira Jorge (EU)
  • Giroud Carine (EU)
  • Goerler Tobias (EU)
  • Hahm Taik Soo (KO)
  • Happel Tim (EU)
  • Hidalgo Carlos (EU)
  • Imbeaux Frederic (EU)
  • Jenko Frank (US)
  • Ko Won Ha (KO)
  • Mantica Paola (EU)
  • Miyato Naoaki (JA)
  • Na Yong-Su (KO)
  • Reinke Matthew L. (US)
  • Ren Yang (US)
  • Roach Colin (EU)
  • Ryter François (EU)
  • Salmi Antti (EU)
  • Shi Shengyu (CN)
  • Smith Sterling (US)
  • Solomon Wayne (US)
  • Sun Pengjun (CN)
  • Wang Zhijiang (CN)
  • Yu Deliang (CN)
  • Bernardo Joao (EU)
  • Beurskens Marc (EU)
  • Casper Thomas (IO)
  • Cavedon Marco (EU)
  • Di Siena Alessandro (EU)
  • Diamond Patrick (US)
  • Duval Basil (EU)
  • Estrada Teresa (EU)
  • Garbet Xavier (EU)
  • Garcia Jeronimo (EU)
  • Hughes Jerry (US)
  • Ido Takeshi (JA)
  • Kamada Yutaka (IO)
  • Lee Hyungho (KO)
  • Liang Yunfeng (EU)
  • Liu Yong (CN)
  • Mariani Alberto (EU)
  • Martin Yves (EU)
  • McMillan Ben (EU)
  • Orlov Dmitri (US)
  • Parail Vassili (EU)
  • Romanelli Michele (EU)
  • Sakamoto Yoshiteru (JA)
  • Satake Shinsuke (JA)
  • Shi Zhongbin (CN)
  • Sun Hongjuan (EU)
  • Thomsen Knud (EU)
  • Wang Fudi (CN)
  • Weiland Jan (EU)
  • Zhou Deng (CN)
  • Bourdelle Clarisse (EU)
  • Chang Choong-Seock (US)
  • Citrin Jonathan (EU)
  • Coda Stefano (EU)
  • Dinklage Andreas (EU)
  • Field Anthony (EU)
  • Gao Zhe (CN)
  • Haiqing Liu (CN)
  • Howard Nathan (US)
  • Hubbard Amanda (US)
  • Jakubowski Marcin (EU)
  • Kaye Stanley (US)
  • Kim Hyun-Tae (EU)
  • Liu Yueqiang (EU)
  • Loarte Alberto (IO)
  • McDevitt Christophe (EU)
  • McKee George (US)
  • Naulin Volker (EU)
  • Park Jin Myung (US)
  • Parra diaz Felix (EU)
  • Peluso Emmanuele (EU)
  • Pusztai Istvan (EU)
  • Putterich Thomas (EU)
  • Rowan William (US)
  • Shanahan Brendan (EU)
  • Shi Yuejiang (CN)
  • Valovic Martin (EU)
  • Verdoolaege Geert (EU)
  • Weisen Henri (EU)
  • Zocco Alessandro (EU)
  • Budny Robert (US)
  • Chattopadhyay Prabal Kumar (IN)
  • Dnestrovskij Yuri (RF)
  • Fable Emiliano (EU)
  • Gohil Punit (US)
  • Hahn Sanghee (KO)
  • Han Xiang (CN)
  • Hillesheim Jon (EU)
  • Holland Christopher (US)
  • Ida Katsumi (JA)
  • Idomura Yasuhiro (JA)
  • Imazawa Ryota (JA)
  • Kirk Andrew C. (EU)
  • Lyu Bo (CN)
  • Maggi Costanza (EU)
  • Maslov Mikhail (EU)
  • McDonald Darren (EU)
  • Mordijck Saskia (US)
  • Nakata Motoki (JA)
  • Pankin Alexei Y (US)
  • Polevoi Alexei (IO)
  • Sarazin Yanick (EU)
  • Schmitz Lothar (US)
  • Schneider Philip (EU)
  • Sciortino Francesco (US)
  • Sips George (EU)
  • Sun Youwen (CN)
  • Waltz Ron (US)
  • Xiang Nong (CN)
  • Xu Guosheng (CN)