Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Innovative approaches and how ITER can help

    More than 30 private fusion companies from around the world attended ITER's inaugural Private Sector Fusion Workshop in May 2024. Four of them participated in a [...]

    Read more

  • Robert Aymar (1936-2024) | A vision turned into reality

    Robert Aymar, who played a key role in the development of fusion research in France and worldwide, and who headed the ITER project for 10 years (1993-2003) befo [...]

    Read more

  • The ITER community | United in a common goal

    Gathered on the ITER platform for a group photo (the first one since 2019, in pre-Covid times) the crowd looks impressive. Although several hundred strong, it r [...]

    Read more

  • Vacuum vessel | Europe completes first of five sectors

    The ITER assembly teams are gearing up to receive a 440-tonne machine component shipped from Italy—sector #5, the first of five vacuum vessel sectors expected f [...]

    Read more

  • SOFT 2024 | Dublin conference highlights progress and outstanding challenges

    Nestled in the residential suburb of Glasnevin, Dublin City University is a fairly young academic institution. When it opened its doors in 1980 it had just 200 [...]

    Read more

Of Interest

See archived entries

Central solenoid : 11 tooling stations to commission

A partial view of the General Atomics module fabrication line, with two winding station tables visible behind a yellow rail. Photo: GA (Click to view larger version...)
A partial view of the General Atomics module fabrication line, with two winding station tables visible behind a yellow rail. Photo: GA
With winding of the first production module for ITER's central solenoid well underway, the US Domestic Agency (US ITER) and its contractor, General Atomics, are now commissioning all of the necessary tooling stations for the 13 Tesla, 1,000-metric-ton electromagnet. Eleven unique stations will form the module manufacturing line at the GA Magnet Technologies Center in Poway, California.

One challenge to commissioning the unique stations is coming up with an appropriate coil that does not use any production conductor. The commissioning process requires a variety of trials to assure that the tooling will perform specific fabrication tasks as predicted. After commissioning, the workstation undergoes a manufacturing readiness review.

"General Atomics has been very clever," said US ITER central solenoid systems manager David Everitt. "They made what we call a 'Frankenstein coil' to test and commission numerous stations. This commissioning coil is made out of qualification samples of real conductor which were coupled with other samples such as empty jacket material."

The commissioning coil is two layers high with real conductor on a portion of one layer of the coil.

At the turn insulation station, fiberglass insulation tape will be wrapped around the wound conductor coils. Photo: GA (Click to view larger version...)
At the turn insulation station, fiberglass insulation tape will be wrapped around the wound conductor coils. Photo: GA
"When you see everything that happens at General Atomics every day, you appreciate that they have a very talented crew out there. We have an innovative team who is highly invested in the project," said Everitt.

So far, the coil has been used for commissioning activities at stations for joint and terminals preparation, stacking, joining plus helium penetrations, reaction heat treatment and part of turn insulation. All or part of ten of eleven stations are now in place at General Atomics and eight of these stations have completed some or all acceptance testing and commissioning activities.

One of the more complex stations to install and commission handles turn insulation. This workstation wraps insulating fiberglass tape and Kapton around the conductor after the coils have been wound and heat treated. In order to wrap the conductor, the coil must be "un-sprung" for insulation wrapping and then reassembled. After insulation is completed, the coils move down the production line to the vacuum pressure impregnation station, where a three-part epoxy mixture is injected under vacuum to impregnate the previously applied turn and ground insulation materials that surround the coil. The epoxy provides both electrical insulation and structural support to the 110-metric-ton magnet module.

A major investment has been the construction of a cold testing facility for the final testing of each module at 4 Kelvin, comparable to ITER's operating temperature for the central solenoid. Commissioning of the cold testing facility is planned for early 2016, and equipment installation has begun.

As the home of the DIII-D National Fusion Facility, General Atomics has a half-century long history with fusion. The Magnet Technologies Center has not only a 4 Kelvin cryogenic system needed for superconducting magnets, but also a large vacuum cryostat for testing magnets, a 50 kA, 10 V power supply, and a fast discharge dump circuit for magnet protection.

See the original article here.



return to the latest published articles