Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the Week | Hard work deserves an outdoor buffet

    A start-of-summer event was held on Friday 21 June for the ITER community—an occasion to celebrate the everyday commitment of staff and contractors alike, acros [...]

    Read more

  • Poloidal field coils | Reflecting on a unique industrial achievement

    They had worked together for 10 years. And on Thursday 20 June, they gathered one last time to reflect on what they had accomplished. Director-General Pietro Ba [...]

    Read more

  • 34th ITER Council | Updated baseline presented

    Nearly 100 people met for two days last week for the 34th Meeting of the ITER Council. The meeting was an important one, as the ITER Organization and the D [...]

    Read more

  • Cryopumps | First unit reaches ITER

    The ITER vacuum team, the European Domestic Agency Fusion for Energy, Research Instruments (RI), and the ITER Director-General were all excited to welcome the d [...]

    Read more

  • Tritium Plant Summit | A shared vision to prepare for delivery

    A summit organized at ITER Headquarters from 3 to 6 June brought together the international teams that will deliver the sub-systems of the ITER Tritium Plant. I [...]

    Read more

Of Interest

See archived entries

Generating runaway electrons in JET to benefit ITER

Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments. (Click to view larger version...)
Like splashes of water: re-deposited, molten beryllium appears on tiles inside the JET vessel after dedicated experiments.
Recent images of JET interior tiles have shown, in graphic detail, the damage that can be caused by so-called 'runaway' electrons in JET plasmas.

In stable fusion plasmas, fast moving electrons are slowed down by collisions. The balance between acceleration and slowingdown due to collisions ensures that under usual circumstances the electrons have a normal thermal distribution of velocities within the confined plasma.

However, there are certain circumstances—especially just after a plasma has terminated or disrupted — where the 'slowing down' effect of collisions is diminished and indeed largely removed. In this situation, JET acts like a particle accelerator enabling 'runaway' electrons to be accelerated to velocities close to the speed of light.

When the beams of runaway electrons hit the beryllium wall tiles they can travel many centimetres through the material producing characteristic melt pools like the one shown here. Special experiments are designed in JET to create and understand the formation of runaway beams. Fortunately, since installation of JET's ITER-like Wall such events do not occur naturally and have to be deliberately generated for such studies.

The JET experiments are providing ITER with vital information on which strategies are effective at mitigating this threat.

Read the article on EuroFusion website.


return to the latest published articles