Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
The ramp-up time for achieving a fusion reaction inside a tokamak machine varies, depending on a certain number of boundary conditions such as volume, temperature and density and, of course, the fuels injected.
In the auditorium of the Faculty of Nuclear Sciences and Physical Engineering, at Prague's Czech Technical University, all the variables were in place on Sunday night—drink, food, room temperature and body density—and so it took less than two minutes after the official opening of this year's FuseNet PhD event before the room started to buzz and the volume tripled. The only thing missing to make the molecules fuse on the dance floor was the music, which soon set in very vibrantly in form of the Apples, a local female rock band.
With a record participation of 130 students, the fifth edition of the FuseNet PhD event is off to an enthusiastic start. Physicist Richard Pitts, from the ITER Organization, opened the scientific part of the program on Monday 16 November with an overview of the ITER Project, assuring those assembled in the auditorium that they were entering the discipline at exactly the right time. "You are at the golden age of fusion."
The event, organized each year under the umbrella of the FuseNet association with the financial support of EUROfusion, brings together a large fraction of the PhD students in Europe that work in the fields of fusion science and engineering. Young researchers get the opportunity to share their ideas, learn from each other's experiences and develop a network of contacts.
"We are seeing some very high quality research," said Jean-Marie Noterdaeme from the Max Planck Institute for Plasma Physics in Garching and Head of the Advisory Board of the European Erasmus Mundus program.
Follow the three-day event through the dedicated FuseNet website.
The Monaco ITER International Fusion Energy Days (MIIFED) and the ITER Business Forum (IBF) 2016 will take place in Monaco from 8 to 11 February 2016. It will be the sole event dedicated to industrial opportunities at ITER in 2016. Over three days, participants will have the opportunity to learn about progress achieved so far, the current status of ITER construction and manufacturing, and upcoming business opportunities. Through B2B and B2C meetings, the event will also facilitate networking between companies and the exploration of partnership opportunities in the context of the technological challenges of ITER. An industrial and R&D exhibition will also be staged. On 11 February, delegates will have the option to visit the ITER worksite as well as two industrial sites where ITER component manufacturing is in progress (Simic S.p.A and Cnim).
For the first time, this international event will combine an ITER Business Forum with the MIIFED international event. The rationale is to facilitate productive interaction between industry and fusion laboratories from the seven ITER Members and to foster collaboration between those actors, especially in technical areas where strong cooperation is required such as heating systems, diagnostics or remote handling systems.
Registration has started! Come and join us! This international conference offers an excellent opportunity for exchanging views and experiences and forming valuable international business relationships for the ITER program and beyond. From 8 to 11 February, we will bring you into contact with high-level decision makers, international industrialists, experienced researchers and ITER staff, giving you plenty of opportunity to meet reliable partners for your core business. Join us at MIIFED-IBF 2016 in Monaco, under the High Patronage of H.S.H. Prince Albert II.
Former German chancellor Helmut Schmidt, who died on 10 November at age 96, played an essential but little-known role in the decision to site the large European tokamak JET in Culham, UK.
In the mid-1970s, the parties involved in the project were facing the difficult task of deciding where to build the ground-breaking machine. Four sites were volunteering: Culham in the UK; Garching in Germany; Cadarache in France and Ispra in Italy.
As neither Ispra, nor at the time Cadarache, hosted a fusion research infrastructure that could support the new project, the choice soon narrowed to Culham and Garching.
Political discussions to decide between the two had been dragging on for almost two years when, on 17 October 1977, the conclusion of a tragic event contributed to breaking the deadlock.
Five days earlier, terrorists had hijacked a Frankfurt-bound Lufthansa airliner to eventually land it in Mogadishu, Somalia. Eighty-six passengers were held hostage; one crew member had been killed.
The German chancellor decided to have the airliner stormed by special troops. The successful operation, with no passengers injured, was a political triumph for Schmidt. The German special troops had benefitted from key intelligence and special equipment from the British Special Air Service, who had sent observers to Mogadishu.
The following day, a meeting was scheduled in Bonn between Schmidt and the British Prime Minister James Callaghan. The atmosphere was one of relief and gratefulness. In an obliging gesture, Schmidt accepted to be more accommodating on the JET siting issue.
One week later, the European partners all agreed on building JET at Culham.
ITER launched its new website this week! A techier look to go with our ultra-hi-tech mission. For all those friends who ask you over lunch: "How does magnetic confinement fusion work — really?" You now have a place to point them to. And don't miss the machine pages! If you find yourself swooning over a cryostat or a divertor in 3D, you're not alone ...