Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
The complex puzzle that makes up MAST Upgrade's main plasma heating system is well on the way to completion at the Culham Centre for Fusion Energy (CCFE) in the UK.
The neutral beam injection system will provide most of the heating power for MAST Upgrade (around 5 megawatts). It works by firing fast-moving neutral particles into the plasma, where their motion is transferred into heat.
Recent work has focused on the system's bend magnets and ion dump assemblies. These components steer stray charged particles away from the heating beam and absorb their energy, which can be as much as 12 megawatts per square metre — much more than the loads on spacecraft re-entering the atmosphere.
The bend magnets were delivered to site during the summer and passed acceptance testing before undergoing a trial fit in the neutral beam injection tanks to check their alignment. Meanwhile, the build of the welded ion dump assemblies has proceeded well throughout the year.
By the end of 2015, the pre-assembly of these components will be complete, leaving them ready for installation into the tanks. The re-build of the neutral beam injection system will take place in 2016.
Mechanical Engineer Jeff Doody from MIT's Plasma Science and Fusion Center (PSFC) received a "Best Paper Award" on 9 October at the COMSOL Conference 2015. The paper, "Structural Analysis of the Advanced Divertor eXperiment's Proposed Vacuum Vessel," describes how Doody used COMSOL Multiphysics modeling software to predict loads and stresses on the vacuum vessel in the initial design for the Advanced Divertor eXperiment (ADX), a proposed high field, high-power-density fusion tokamak.
Collaborating with him at the PSFC were Chief Mechanical Engineer Rui Viera, Senior Research Scientist Brian LaBombard, Principal Research Scientist Bob Granetz, Mechanical Design and Fabrication Specialist Rick Leccacorvi, and Principal Research Engineer Jim Irby.
Photo: Mechanical Engineer Jeff Doody of MIT Plasma Science and Fusion Center.
Installation of lower divertor coil box brings Tore Supra closer to ITER
Installation of lower divertor coil box brings Tore Supra closer to ITER
Operation since 1988, the CEA-Euratom tokamak Tore Supra (France) is undergoing a major transformation in order to serve as a test bench for ITER—the WEST project.
Equipped with a new, actively-cooled tungsten divertor, WEST will test tungsten technology, acquire data on metal fatigue, and explore the component boundary conditions in advance of ITER.
As early as 2016 the machine will be ready to test the first samples of plasma-facing units—an arrangement of small tungsten blocks that, once assembled, will form the new divertor.