Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Same component, same origin, same route: the second of four high voltage transformers procured by the US and manufactured in Korea reached Marseille's industrial port (Fos-sur-Mer) on Sunday 19 April.
The 87-ton component was unloaded the following morning and placed in storage, where it will remain until the last two transformers reach Fos (delivery expected around 10 May).
On the ITER platform, near the 400 kV switchyard, workers are putting the finishing touches to the large concrete pit that will host the first transformer, which should be operational in the early months of 2016.
Connected to the switchyard, it will bring down the voltage to 22 kV and dispatch power to the various plant systems of the installation.
An important milestone has been reached on the MAST-Upgrade project, with the re-installation of four of the largest magnetic coils inside the machine.
Many of the internal poloidal field magnetic coils are new, especially around the upper and lower parts of the device. Only four coils in MAST-Upgrade remain from the original MAST experiment — the large mid-plane P4 and P5 (upper and lower) coils.
But it was not as simple as just leaving them in the vessel — they were removed with all the other internal equipment to enable the interior to be fully stripped down and cleaned. The coils were also comprehensively cleaned, including a hydroblast pressure wash. The P5 coils were then fitted with new flux loops.
Prior to re-installation, a full spatial survey of the vessel and coil supports and indeed of the shape of the coils themselves was undertaken. All four cleaned and surveyed coils were re-installed a few weeks ahead of schedule, on new strengthened coil supports inside the MAST-U vessel. A final survey indicated they were within 0.5mm of their optimum position — minimizing any stray fields when operations commence.
Coil re-installation is an important step, marking in many ways the beginning of the rebuild of the tokamak.
The Ecole Polytechnique Fédérale de Lausanne (EPFL) is presenting the first Massive Open Online Course (MOOC) on plasma physics and its applications, including fusion energy, astrophysical and space plasmas, societal and industrial applications. Enroll now !
A team including Prof. A. Fasoli, Prof. P. Ricci and colleagues at the Plasma Physics Research Center (CRPP) of EPFL, recorded the first MOOC on the basics of plasma physics and its main applications.
Current titles include: • Basics of plasma physics • Basics of space plasmas in astrophysics • Industrial and medical applications of plasmas • Basics of fusion as a sustainable energy • Advanced concepts in fusion such as magnetic confinement, plasma heating and energy extraction.
Classes start on 1 May 2015. The course is given in English and will last nine weeks.
The mission of the JT-60SA tokamak (based in Naka, Japan, and financed jointly by Europe and Japan) is to contribute to the early realization of fusion energy by addressing key physics issues for ITER and DEMO. It is a fully superconducting tokamak capable of confining high-temperature (100 million degree) deuterium plasmas, equivalent to achieving plasma energy balance if 50/50 deuterium/tritium were used. It is designed to help optimise the plasma configurations for ITER and DEMO, and has a large amount of power available for plasma heating and current drive, from both positive and negative ion neutral beams, as well as electron cyclotron resonance radio-frequency heating. The machine will be able to explore full non-inductive steady-state operation.
More news in the March issue of the JT-60 SA newsletter.