Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Registration is open now for the 2019 edition of the ITER Business Forum (IBF/2019) to be held in Antibes, France from 26 to 28 March.
At IBF/2019, representatives of the ITER Organization, the Domestic Agencies, and main suppliers will be making presentations on industrial involvement in the project, procurement opportunities, and main future calls for tender.
In specific thematic sessions, registered delegates will have the opportunity to meet potential partners or subcontractors at the French, European or international level. A 1-1 meeting schedule tool is also available on line for all registered companies.
To find out more about the conference, to register to participate, or to reserve a stand, please see the IBF/2019 website.
Like mountaineers at the foot of Mount Everest, spacefaring nations have aimed for the Moon "because it's there." Now, close to 60 years after the first object from Earth landed (or more accurately "crashed") on the surface of our satellite and half a century after Apollo 11 gently deposited two men on the Sea of Tranquility, there are very concrete incentives to 21st century lunar exploration.
And one of these incentives has to do with the future of fusion.
Research today is essentially focused on the fusion of hydrogen isotopes deuterium and tritium, which is the "easiest" to achieve with our present technological capabilities. However, other energy-producing combinations of light nuclei are theoretically possible, a few of which involve the helium isotope 3 (3He). Fusing 3He with itself or with deuterium offers the immense advantage of not producing neutrons and hence avoids activating materials in the fusion chamber.
Carried by solar wind, 3He is prevented from reaching the surface of our planet because of the magnetic field that protects it. On the Moon however, where the magnetic field is considerably weaker, large quantities of 3He have accumulated close to the surface. For many years, some scientists, politicians, and private companies (and even a former Apollo astronaut) have made the argument for "mining the Moon" for 3He. Other scientists argue that mining the Moon for 3He is pure ... moonshine.
Despite the controversy, 3He recently made headlines in relation with the recent landing of the Chinese rover Chang'e 4 on the dark side of the Moon. Professor Ouyang Ziyuan, the Chief Scientist of the Chinese Lunar Exploration Program, was widely quoted saying that a long-term industrial program to mine the Moon for 3He was economically justified. "The moon is 'so rich' in helium 3," he said, "that it could solve humanity's energy demand for around 10,000 years at least."
Photo: The Chang'e 4 module landed on the dark side of the Moon on 3 January 2019.