Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
Some 4,500 components, large and small, will be shipped to ITER for integration into the ITER cryoplant, which is under construction now on the ITER platform.
Two of the largest were delivered in November 2016 by the European Domestic Agency: 35-metre quench tanks that will store gaseous helium in the case of a magnet quench.
The tanks are formed from an inner stainless steel container that will hold the gas and an outer carbon steel shell that will insulate the inner vessel and keep the temperatures low.
Manufacturered by Air Liquide subcontractor Chart Ferox (Czech Republic) according to ITER Organization and European Domestic Agency requirements, the tanks travelled at night in a long convoy along the ITER Itinerary from the Mediterranean port of Fos-sur-Mer to ITER.
See the full report here (including a 4'10" video).
A physicist at the Culham Centre for Fusion Energy (CCFE) is developing a code to calibrate camera views of fusion experiments.
For the past two years, Scott Silburn has been leading the development of Calcam, a program for calibrating camera viewing geometry on fusion devices. The program allows the user to match up features seen in the camera images with those on a computer-aided design model from the drawing office at Culham. From this, the position, orientation, and lens properties of a camera system can be determined. This information can then be used to calculate exactly where the camera's lines-of-sight pass through the plasma, and also which locations on in-vessel components correspond to which positions in the image.
An example application of the code is improved positional calibration for JET's high-resolution divertor infrared cameras, which measure the heat loads at the strike points where the plasma interacts with the divertor tiles. The improved information has been used to improve the accuracy of some of the signals from the cameras, and makes it easier to compare the camera data against other diagnostic signals.
An agreable off-shoot of the technique is that it produces interesting images, as seen in the image above (photo credit: CCFE).