Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.
Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.
On 3 December, over 1,100 ITER staff, contractors, partners, families and friends celebrated the end of 2018 as a successful year for the ITER Project and its mission to create clean and safe energy for the future.
Opening the evening at the Grand Théâtre de Provence in Aix-en-Provence, ITER Director-General Bernard Bigot told the audience that "our progress is the result of hard work, creative problem-solving and strong commitment on the part of every member of the ITER Team."
The highlight of the evening was the show of the award-winning shadow dance team Die Mobilés from Germany, whose masterful play with shapes, light and music took the audience on a tour to ITER Member countries around the world and through a short history of film. With astonishing creativity and as a special surprise for the audience, the artists brought ITER to life on stage—including a depiction of a busy worksite and a Tokamak model.
Registration is now open for the 10th ITER International School, which will take place in Daejeon, Korea, from 21 to 25 January 2019. The registration fee for foreign students of KRW 340,000 (equivalent to around EUR 265, VAT included) includes accommodation, lunches and dinners, and bus service between the hotel and the school.
The ITER International School aims to prepare young scientists/engineers for work in the field of nuclear fusion and in research applications associated with the ITER Project.
The 10th edition, to be held at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, is organized around "The Physics and Technology of Power Flux Handling in Tokamaks." This subject has an interdisciplinary character: power flux handling in tokamaks is key challenge for the development of nuclear fusion, but one that can only be resolved through the integration of physics-based approaches to decrease power fluxes on the tokamak wall together with technological developments for tokamak wall components.