Comme un bateau dans une bouteille
Venus de Barcelone, siège de l'agence européenne(1) pour ITER, et de Saint-Paul-lez-Durance (13) où se construit l'installation, une dizaine de spécialistes ont fait le déplacement. Ils vont assister au couronnement de près de vingt années d'efforts : l'insertion, au travers d'un étroit tunnel, d'une pièce d'une dizaine de tonnes dans une réplique de la chambre à vide d'ITER.
On pense à ces vieux marins qui parvenaient à faire entrer une maquette de bateau, toutes voiles déployées, dans une bouteille. Eux aussi devaient soigneusement anticiper leurs mouvements et calculer leurs gestes au millimètre près. Mais une fois dans la bouteille, le bateau n'en sortait plus. La pièce de dix tonnes, elle, est destinée à être remplacée au moins une fois au cours de la période d'exploitation d'ITER. Après l'avoir insérée, il va donc falloir démontrer qu'on peut l'extraire.
Cette pièce massive est l'une des 54 « cassettes » qui constituent le divertor du tokamak ITER — un anneau de 9 mètres de diamètre situé dans la partie basse de la chambre à vide et directement exposé au feu du plasma.
Lors du montage du tokamak, les cassettes devront être installées une à une après que la chambre à vide qui leur sert de support aura été assemblée. La difficulté est double, liée à l'étroitesse du chemin d'accès et à l'impossibilité de visualiser la progression de la cassette à l'intérieur du tunnel.
Un système robotisé long de 22 mètres, équipé d'un rail et animé par des moteurs hydrauliques (le Cassette Mover) va progressivement amener la cassette jusqu'à son ancrage dans la structure de la chambre à vide. Les derniers mètres du parcours sont masqués aux regards comme ils le seront lors de la phase d'installation réelle, lorsque la cassette cheminera par l'une des « pénétrations » qui donnent accès à la chambre à vide du tokamak. Entre la pièce de dix tonnes et les parois de cet étroit passage, l'espace n'est que de quelques millimètres.
Dans une pièce aveugle, pas très loin du Cassette Mover, Hannu Saarinen, ingénieur-chef au Centre de recherches VTT, a les yeux rivés sur une batterie d'écrans. Sur le plus large d'entre eux, la progression de la cassette s'affiche, « visualisée » sous plusieurs angles différents. L'image ne provient pas d'une caméra — impossible à installer compte tenu de l'exiguïté du passage — mais d'une restitution en réalité virtuelle, tridimensionnelle et actualisée en temps réel par un système de capteurs.
Grâce à ce flux d'information, Hannu sait à chaque instant où et dans quelle position se trouve la cassette, quelles sont les forces qu'elle exerce sur la structure, quelles infimes déformations son déplacement lui fait subir. Plus de 80% de l'opération est programmée et se déroule de manière automatique. Le joystick que Hannu garde à portée de main ne sert qu'à des « petits ajustements. »
Dans les « conditions de laboratoire » du Centre de recherches techniques de Finlande, tout s'est déroulé de manière parfaite. Mais saura-t-on reproduire ce sans-faute lors de l'assemblage de la machine, dans le contexte d'un vaste chantier industriel ? C'est tout l'enjeu de la phase de développement qui s'ouvre aujourd'hui : il s'agit maintenant, sur la base de l'expérience acquise, de développer une robotique adaptée aux exigences d'un « vrai » réacteur de fusion et aux contraintes de l'environnement nucléaire.
« Ce que nous avons vu ici, résume Carlo Damiani, le responsable des systèmes robotisés à l'Agence européenne pour ITER (Fusion for Energy), c'est le début d'une grande aventure technologique, dont ITER est le moteur. L'industrie, les PME, les laboratoires vont devoir mobiliser leur savoir-faire, leur créativité et leur capacité d'innovation pour concevoir les systèmes des futurs réacteurs de fusion industriels. »
Au-delà d'ITER, au-delà même de la fusion, le champ d'application de ces systèmes est immense. Comme dans d'autres domaines — les aimants supraconducteurs, la cryogénie, les matériaux — les exigences d'ITER ont porté une technologie aux limites de sa faisabilité.
(1) L'Europe contribue à hauteur de 250 millions d'euros aux systèmes robotisés d'ITER, dont 40 millions destinés aux systèmes d'installation/remplacement des cassettes du divertor.