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• PhD in plasma reconstruction and nonlinear MHD modeling (2014-2020)

- Kinetic equilibria reconstruction in KSTAR

- Nonlinear 3D MHD modeling (JOREK) on ELM and RMP in KSTAR

• Postdoctoral research at Princeton University (2020-2022)

- Real-time instability control (ELM/TM) in KSTAR/DIII-D

- Nonlinear RMP transport modeling in KSTAR/DIII-D

• Staff scientist at PPPL (2023-present)

- Real-time optimization of 3D/detachment in DIII-D/KSTAR

- Deputy leader for joint hybrid scenario taskforce in DIII-D/KSTAR
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• Introduction (Importance of controls in tokamak)

• Adaptive control for tokamak instability

• Improving control policies

• Development toward fully ML/AIp-based control

• Summary
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● Achieving sufficiently high temperature and density is key mission
→ Need to confine the plasma

● However, the nature doesn’t like confinement
→ Try to escape through transport

● Transport barrier provides a promising way to achieve strong confinement
→ L to H mode or ITG, etc.

Tokamak: Way to confine the plasma against its nature 4

[L to H mode]
[ITB]



● However, a transport barrier or strong confinement provides plasma another 
path to escape → Instability by gradient

● Plasma instabilities generate macro/micro & transient/continuous transport
→ Harms operational and mechanical safety

Confinement drives instabilities, discouraging the machine 5

[ELM (AUG), A.Cathey 2020] [Example of tearing mode]



● Therefore, finding the balance between confinement and stability is key
● In addition, additional constraints exist for future tokamaks

→Heat loads to the wall, cost efficiency, etc.
● Inevitably, tokamak plasma requires a multi-objective optimization

Finding balanced optimal solution is key for plasma operation 6



● Feedforward scan to identify system
● Directly explore the system to find the solution

In simple case, directly exploring system is working 7



● However, expensive with higher dimensions and dynamical behavior
● Can potentially break things
● Inapplicable in time-evolving/nonlinear/long-term operation→ Tokamak

However, tokamak is too complicated for simple solution 8



● Tokamak needs an optimized solution compatible with time-evolving
scenarios → Particularly, important for stable long-pulse operation in ITER

● Translated to the control solution (simply linear or complicated nonlinear)

Tokamak: Way to confine the plasma against its nature 9

[ITER Final Design Report (IAEA 2001)]



• Introduction

- Needs of controls in tokamak

- Example of controller

Contents 10



• Controller finds the desired solution of the plant through a closed-loop

- A dynamical system driven by externally imposed inputs (u)

• Based on the system model (or identification)

- First principle (physics): Equation of motion X(t,F)

- Data-driven: Measured response (X) for various forms of input (F) in frequency

Controller for deriving desired solution 11



● A control system (controller, K) regulates the behavior of device/system via 
control loops, which takes inputs of
- Reference signals (r) & Outputs (y) of the plant (G)

● And produces output of 
- Control inputs (u) to be applied to the plant to satisfy objectives
- Plant outputs following the references & stabilized
- With control inputs remain within described bounds

● Correlation of K(r,y)→u: Control law (or policy)

Control system 12



● If the system is continuous and not too nonlinear, 
Classically, the PID controller based on the system ID/model and tuning

Typical type of control in tokamak 13

● If we know model to describe and predict plant, advanced solution is 
possible using model predictive controller (MPC)



● Shape and Gas control (density)
- Good for linear system

Example of control in tokamak - PID 14

Shape control in EAST [Q.P. Yuan, NF 2013] Density control in MAST-U 
[G.L. Derks, FED 2024]



● Plasma profile control
- More complicated (or nonlinear) system
- Ex) Profiles by plasma actuators (heating, current drive)

Example of control in tokamak - MPC 15

q control in DIII-D [E. Schuster , NF 2017]
q, beta control in TCV [E. Maljaars, NF 2017]



● However, plasma behavior and control objective can be highly nonlinear, 
bifurcative, where the model is unknown.

● Categorize plasma with defined finite machine states.
→ Effectively handle bifurcating systems and purposes.

● Adjust control policies (parameters) for (detected) states in time.
→ Adaptive control strategy.

Adaptive control is simple and effective approach to handle 
complicate system

16



• Introduction

• Adaptive control for tokamak instability

- Edge localized mode control using 3D field

Contents 17



● Edge localized mode (ELM) driven by a strong 
profile gradient at the pedestal
- Pressure gradient (𝝯P)
- Edge current density (jϕ)

● ELM as a MHD instability
- Peeling-ballooning mode (PBM)
- 𝝯P: Ballooning component
- jϕ : Peeling component

Edge localized mode in H-mode plasma by pedestal gradient 18



● ELM onset and crash when pedestal reaching the stability limit (𝝯P,j). 
● Transient heat flux on plasma facing component.

→ In ITER, this severely damage the machine’s life span.
● Therefore, ELM must be strongly mitigated or suppressed.

ELM drives transient heat flux on the divertor, which must be 
avoided

19
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● Resonant magnetic perturbation (RMP) by 
external field coils 

● Induce transport at the pedestal
● Degradation of the pedestal leads to the 

suppression of ELMs
→ RMP-ELM suppression

● Promising method for ITER
● However, it possesses disadvantage

→ Loss of H-mode confinement

Resonant magnetic perturbation (RMP): Degrading pedestal 20

KSTAR RMP-pump [S.K.Kim, NF 23]



● RMP is changed by adjusting the amplitude and distribution of coil currents
- Amplitude (IRMP)
- Spectrum (S): Normalized current distributions

● Proper RMP (control) is essential for ELM suppression
- Sufficient IRMP for pedestal degradation
- Optimized S for suppression without core-locking (plasma disruption)

RMP is characterized by Amplitude and Spectrum 21

DIII-D 3D-Coil [S.K.Kim, NC 24]



● Plasma response to RMP amplitude (IRMP) is nonlinear
- Transient behavior in pedestal (confinement) degradation

● Bifurcation in two different states: ELMy vs Suppressed
● IRMP optimization: Balancing suppression and confinement

RMP control is multi-objective problem in nonlinear system 22

KSTAR RMP-pump [S.K.Kim, NF 23]



● RMP-hysteresis in ELM suppression (IRMP,IN > IRMP,OUT)
● Enables confinement recovery in a suppressed state
● However, difficulty in prediction due to nonlinearity

→ rt-control solution

Hysteresis in RMP response allows the confinement recovery 23

KSTAR RMP-hysteresis [S.K.Kim, NF 22]



• Introduction

• Adaptive control for tokamak instability

- Edge localized mode control using 3D field

- Adaptive RMP control of ELM optimization

Contents 24



● Defined three machine states
- ELMy (when ELM presents)
- Wait (500ms at ELM get suppressed)
- Suppressed (no ELMs)

● Control policies
- ELMy: Increase IRMP→ To get suppression
- Wait: Hold IRMP→ Give time for the system to respond
- Suppressed: Decrease IRMP →To increase confinement

Adaptive control can provide simple solution to this problem 25



● The transition between machine states 
- Based on detected ELMs from the Da signal

● Control policy on IRMP only with fixed spectrum (empirically)
● Implemented in DIII-D and KSTAR plasma control system (PCS)

Adaptive amplitude control policy while maintaining simplicity in 
spectrum

26



● Enhanced confinement by adaptive IRMP

- ITER similar shape plasma
● Pedestal recovery by exploiting hysteresis

- Thermal, particle, and momentum pedestal
- Confinement quality (H89)
- Figure of merit (G=𝛽NH89/q2

95)

● Control convergence is limited
- Limitation of bang-bang approach

Successful demonstration: Suppression w/ enhanced 
confinement

27

[S.K.Kim, NC 24]



● Two simple control policies can lead to bang-bang control.
- Unfavorable oscillatory behavior

● Introducing memory on the condition where state transition occurs
- Set control boundary with memory+margin(input)
- Enable convergence 

Control convergence can be improved by adding simple memory 28



● Demonstrated in KSTAR
- Leveraging long-pulse operation

● Confirmed convergence
- Suppression with H-mode confinement

● Confirmed multi-device capability
- Again, recovery in all pedestals, H and G

Stabilization in long pulse with simple additional constraint 29

[S.K.Kim, NC 24]



● Effective application of adaptive RMP control
- G=0.4 for ITER baseline [Gormezano, NF 07]

● However, these control policies and state 
detection are not clever enough 

● Adaptive control can be improved by 
introducing models and state predictor

Adaptive control is effective but we can make better 30

[S.K.Kim, NC 24]



• Introduction

• Adaptive control for tokamak instability

• Improving control policies

- Early action using precursor detection

Contents 31



● State detector is convenient but ineffective in avoiding undesired state
→ State probing or prediction is an effective solution

● Introducing the physics model allows a more flexible control policy toward an 
advanced optimized control solution
→ Ex. Strategy to deliver proper/optimized RMP shape (spectrum)

Introducing more physics into adaptive control 32



● The conventional approach allows state transition
● Earlier switch of control policy based on state prediction

→ Intermediate state with control policy that prevents transition
● For example, maintaining ELM suppressed state by prediction and RMP 

control in advance to avoid state transition

State (ELM) prediction allows earlier action to prevent it 33

Machine state I
(desired)

Machine state II
(undesired)

Intermediate state

Precursor
or prediction

Conventional



● Memory-based prevention of state transition is effective
→ Ex. Stable convergence of ELM control  

● However, memory can be outdated in the dynamical system
● In addition, the memory scheme is vulnerable to sporadic system oscillation

→ Lead to the unsuccessful optimization
→ Ex. Maintaining over RMP current and bad confinement

Such strategy allows more effective prevention of state transition 34

[S.K.Kim, APS-DPP 22]



Predicting the state transition can be done through precursor 
detection or prediction of state evolution

35

● Precursor: Patterns or signals which is observed before a transition
→ Robust and straightforward to detect
→ However, not relevant to general cases

● Prediction: Foresee the future state (next 10ms, 1s,..)
→ Based on the history or unrecognized pattern
→ Enables general solutions for various cases
→ However, it is physically more challenging



Examples of precursor and prediction 36

● Examples of precursors for instabilities (Sawteeth, ELMs)
● The importance of checking multiple signals to explore it

- First step to explore the feasibility of state prediction

Sawtooth 
precursor

Sawtooth precursor 
[I. Chapman, Active Control of Magneto-hydrodynamic 

Instabilities in Hot Plasmas (2014) ][KSTAR-RMP ELM suppression, R. Shousha IAEA-FEC 23]



● ELM avoidance/minimization during ELM suppression using precursor
- Intermediate state (PROBE) when the precursor is detected
- Control policy: Stepwise of RMP increase and hold
- After the JUMP state returns to suppressed if ELM is suppressed

Example: ELM precursor and early action to ELM prevention 37

SUP state
(decrease RMP)

ELM state
(increase RMP)

JUMP state
(jump RMP)

Precursor
detected

Old



● ELM avoidance/minimization during ELM suppression using precursor
- Intermediate state (PROBE) when the precursor is detected
- Control policy: Stepwise of RMP increase and hold
- After the JUMP state returns to suppressed if ELM is suppressed

Example: ELM precursor and early action to ELM prevention 38

[R. Shousha IAEA-FEC 2023]



● Precursor detection can also be leveraged for active state probing
- Explore the boundary where state transition occurs

● Negative pulses for state probing (or detecting marginal condition)
- Reaching marginal level→ Occurrence of ELM precursors 

● Replacing “passive” lower bound based on memory
- Control with probed value and safety margin 

Example: ELM precursor and early action to ELM prevention 39



● IRMP control with probed lower bound
- Probing leads to early detection of stability limit
- Stable ELM suppression operation with minimal ELM onset

Example: State probing and lower boundary control 40

[R. Shousha IAEA-FEC 2023]
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● However, the precursor is also sensitive to plasma condition, and time margin 
before state transition is not consistent
→ Prediction can provide a better path
→ However, developing rt-predictive model is hard

● Particularly difficult when the system is highly nonlinear with less knowledge
→ No model or
→ Irrelevant to real-time application

● Data-driven model can be an effective solution

Limitation of precursor based approach 41
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• Adaptive control for tokamak instability

• Improving control policies

- Early action using precursor detection

- Leveraging data-driven physics model

Contents 42



● Data-driven model: Model is driven (regression) by a given database
● Possibly learns physics inside the data
● Data can be constructed from experiments (measurement) and simulation
● Effectively handles

- Model acceleration
- Model with unknown physics

Data driven model provides effective way 43



● Conventional simulation or modeling enables physics-based prediction and 
optimization

● In addition, it has good scalability
● However, the effort is often limited because computational cost

- Ex. Linear MHD calculation takes >10s
● Surrogate model can be an effective solution (acceleration)

Model-based driven: Surrogate with power for scalability 44



● Optimized RMP spectrum
- ELM suppression without driving undesired instability
- Relied on the empirical (scanned) spectrum 

● Physics-based optimization [J.-K. Park(NP 18), S.M. Yang(NC 24)] 
- Experimentally demonstrated physics model (GPEC code)
- Considerable computation time (~10s)

Example for surrogate: rt-GPEC 45



● Model-based surrogate models (rt-GPEC) [S.K. Kim Nat. Comm 24]
- Accelerate to 1ms using real-time equilibrium info (EFIT)
- Provides real-time solution

● Integrated to adaptive IRMP control → Enables fully optimized RMP

Example for surrogate: rt-GPEC 46



● Successful demonstration in KSTAR tokamak [S.K. Kim Nat. Comm 24]

- Control-driven n=1 RMP (very challenging)
- Adaptive algorithm → IRMP

- ML-surrogate → Spectrum

● Compatible with dynamic evolution  
- Favorable for long-pulse and ITER

● Scalability of ML model to ITER
- Advantage of a physics-based model

Application for surrogate: Integrated ML and adaptive controls 47

[S.K.Kim, NC 24]



• Introduction

• Adaptive control for tokamak instability

• Improving control policies

- Early action using precursor detection

- Leveraging data-driven physics model

- Experimental data-driven model

Contents 48



● Database constructed from experimental diagnostic data
● Straightforward but also little knowledge of optimal mode structure 

before trying (Physics understanding can guide input/structure selection)
● Strong potential in finding new physics and unrecognized patterns hidden 

in the signals

Diagnostic-based driven: Capturing un/known physics/patterns 49



● Detecting LH transition using Da diagnostic [G.Shin NF 20]

- LSTM based pattern detection

Example: State detection (LH transition) 50



● Suppressing first ELMs is needed for future device
● Early RMP before LH transition can suppress it
● However, it has limitations

- Easier disruption at L-mode
- RMP can prevent H-mode access

● RMP at H-mode but before ELM
- Accurate timing is key
- Enabled by H-mode detector

Application: State detection (LH transition) 51

[G.Shin NF 22]



● Long-pulse record by integrating scheme with adaptive controller

Successful full integration to adaptive control, making high betan 
and pulse length records

52

[R. Shousha IAEA-FEC 
2023]



● AE modes reduce plasma performance. We would like to minimize them

● Input: Spectrogram of each ECE channel

● Process Stage 1: Enhancing spectrograms using Autoencoder network

● Process Stage 2: Detecting AE modes using Recurrent Neural Network

● Output: Score of AE modes in time-space

Example: State detection (Alfven instability) 53

Feature enhancement

(using Autoencoders)

AE Detection (using RNNs)

Real-time ECE data

[Alfven detection (A.Jalalvand, APS 23)]



● ELMy transition prediction using edge density fluctuation (BES)
● Good example in extracting hidden patterns from multi-dimensional signal

-Trained with ~1000 DIII-D shots including H, RMP, QH-modes

Example: State prediction (ELMy state) 54

[S. Joung et al., NF 64, 2024]
[K. Gill et al., MLST 5, 2024]



● Tearing mode (TM) is core MHD instability, must be avoided (before onset)
● Prediction models use state information to predict TMs up to 500ms in 

advance

Example: State prediction (Tearing Mode transition) 55

[A. Rothstein APS-DPP 24]



Application: State prediction (TM transition) 56

● Electron cyclotron heating (EC) is a good actuator to suppress TM
● Loop uses diagnostic data to predict TM stability and then steer EC to 

preempt (avoid) TMs

[A. Rothstein APS-DPP 24]



● TM controller aims EC to expected mode location when plasma state 
is predicted to be unstable.

Application: State prediction (TM transition) 57

[A. Rothstein APS-DPP 24]
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- Leveraging data-driven physics model

- Experimental data-driven model

- Examples for easing data-driven model for rt-control
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● The larger model makes it easier to capture complicated/nonlinear feature
- However, it can be heavy for real-time run

● Smaller model is less vulnerable to overfit or oscillation, better rt-feasibility
● In addition, a smaller model is more robust oscillatory behavior

- However, less accurate
● Ensemble smaller models can maintain benefits with enhanced accuracy

Well-known schemes to improve model capability in real-time: 
Reducing model size by using ensemble average of smaller model

59



● Nonlinearity and sensitivity of the physics model can introduce oscillatory 
behavior on output (strong sensitivity of small change in input)

● Such sensitivity is generally not true or important
● A low-pass filter can be effective in suppressing oscillations while capturing 

a key aspect of model prediction

Well-known schemes to improve model capability in real-time: 
Dealing oscillatory behavior of model using low-pass filter

60

[S.K.Kim, NC 24]



● The diagnostic-based model may have limitations in scalability
- Extrapolation is feasible but not guaranteed

● If the physics model captures the experimental trend, they may be combined 
to produce a larger database (data+sim)

● Filling the missing gaps while maintaining unveiled physics in diagnostic data

Well-known schemes to improve model capability in real-time: 
Filling gaps in database leveraging simulation

61

abbate 
figure

[J. Abbate NF 21]
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• Improving control policies

• Development toward fully ML/AIp-based control
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● Derived control strategy, directly driven by experimental 
control input and output

● Nonlinear control policy covering multiple states
● Lower complexity of control policy with fewer states
● Better handling the nonlinearity
● Can provide Novel control strategy (insight) derived from unveiled physics
● Reinforcement learning is one of the attractive approach

From adaptive to fully AI/ML-based control 63



● Learning to maximize a reward while interacting with an environment.

Introduction to Reinforced Learning 64

Ride safe & have fun by 
controlling steer, brake, 
pedal on the road.

Key components of RL agent:
● Policy: It is a map from state 𝑠 to action 𝑎

○ The rider's strategy for choosing actions (steering, 

pedaling, balancing) based on the current state of the 

bicycle to maintain balance and forward motion.

● Value function: is a predictor of future 
reward

○ The rider's assessment of how favorable a certain 

state is, considering the long-term goal of riding 

successfully without falling.

● Model: predicts what the environment will 
do next

○ The rider's understanding of the cause-and-effect 

relationships in bicycle dynamics that predicts how 

actions will change the state of the bicycle.

A(t)
Action

R(t)
Reward

O(t)
Observation

S(t)
State



● Given the plasma state, S(t), which is 
observed as O(t) by the controller, 
which action A(t) should be taken to 
maximize the cumulative reward 
R(t+1) i.e. minimize instability & 
maximize gain.

Avoiding tearing mode instabilities with RL at DIII-D 65

Actuators A(t)

Stability 
and gain

R(t)

Measurements O(t)

Plasma
State S(t)

[J. Seo Nature 24]



• Design AI control: Objective is to avoid instability 

while pushing up performance.

• Preemptive control of beam power and plasma 

shape can avoid the onset of tearing modes.

Avoiding tearing mode instabilities with RL at DIII-D 66

[J. Seo Nature 24]



• Control is becoming more important as plasma physics advances

• Adaptive control is an effective approach to handle the plasma system

• Predictive model is key for advancing the scheme

• However, it is difficult due to complexity and nonlinearity

• Exploring pattern is a good starting point

• ML/AI is bringing new insight and predictive capabilities to plasma control

- Scalability will be important aspect

Thank you

Define objectives, explore patterns, develop model, and apply 67
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