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Tokamak: Way to confine the plasma against its nature 9 4

e Achieving sufficiently high temperature and density is key mission
— Need to confine the plasma
e However, the nature doesn’t like confinement
— Try to escape through transport
e Transport barrier provides a promising way to achieve strong confinement

—> Lto H mode or ITG, etc.
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Confinement drives instabilities, discouraging the machine : 5

e However, a transport barrier or strong confinement provides plasma another
path to escape - Instability by gradient

e Plasma instabilities generate macro/micro & transient/continuous transport
— Harms operational and mechanical safety

J = m 10000

[ELM (AUG), A.Cathey 2020] E [Example of tearing mode]



Finding balanced optimal solution is key for plasma operation

e Therefore, finding the balance between confinement and stability is key
¢ In addition, additional constraints exist for future tokamaks
—>Heat loads to the wall, cost efficiency, etc.

e Inevitably, tokamak plasma requires a multi-objective optimization
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In simple case, directly exploring system is working

e Feedforward scan to identify system
e Directly explore the system to find the solution




However, tokamak is too complicated for simple solution

e However, expensive with higher dimensions and dynamical behavior
e Can potentially break things
e Inapplicable in time-evolving/nonlinear/long-term operation—-> Tokamak
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Tokamak: Way to confine the plasma against its nature 9

e Tokamak needs an optimized solution compatible with time-evolving
scenarios - Particularly, important for stable long-pulse operation in ITER
e Translated to the control solution (simply linear or complicated nonlinear)
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Controller for deriving desired solution

- Controller finds the desired solution of the plant through a closed-loop
- A dynamical system driven by externally imposed inputs (u)
* Based on the system model (or identification)
- First principle (physics): Equation of motion X(t,F)
- Data-driven: Measured response (X) for various forms of input (F) in frequency

Mass + Spring +Damper (Plant)

_x_
a- - B~
l\‘spﬂng

‘ Controller '



Control system

e A control system (controller, K) regulates the behavior of device/system via
control loops, which takes inputs of
- Reference signals (r) & Outputs (y) of the plant (G)
e And produces output of
- Control inputs (u) to be applied to the plant to satisfy objectives
- Plant outputs following the references & stabilized
- With control inputs remain within described bounds
e Correlation of K(r,y)=>u: Control law (or policy)

Reference Controller Plant

r Outputs




Typical type of control in tokamak

e |[f the system is continuous and not too nonlinear,
Classically, the PID controller based on the system ID/model and tuning

Reference e Controller Plant
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e |f we know model to describe and predict plant, advanced solution is
possible using model predictive controller (MPC)
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Example of control in tokamak - PID

e Shape and Gas control (density)
- Good for linear system
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Shape control in EAST [Q.P. Yuan, NF 2013]
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Example of control in tokamak - MPC

e Plasma profile control
- More complicated (or nonlinear) system
- Ex) Profiles by plasma actuators (heating, current drive)
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Adaptive control is simple and effective approach to handle ﬁ)

complicate system

e However, plasma behavior and control objective can be highly nonlinear,
bifurcative, where the model is unknown.

e Categorize plasma with defined finite machine states.
— Effectively handle bifurcating systems and purposes.

e Adjust control policies (parameters) for (detected) states in time.
— Adaptive control strategy.

y : yl—:— —*u
| !
D R G s—
i A
| > Y >u




Contents

* Introduction
* Adaptive control for tokamak instability
- Edge localized mode control using 3D field



Edge localized mode (ELM) driven by a strong
profile gradient at the pedestal

- Pressure gradient (VP)

- Edge current density ()

ELM as a MHD instability

- Peeling-ballooning mode (PBM)
- VP: Ballooning component

-J, - Peeling component
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ELM drives transient heat flux on the divertor, which must be 3

avoided

e ELM onset and crash when pedestal reaching the stability limit (VP,)).
e Transient heat flux on plasma facing component.

— In ITER, this severely damage the machine’s life span.
e Therefore, ELM must be strongly mitigated or suppressed.

Peeling UNSTABLE

Coupled
—— Peeling = Ballooning

Plasma current (j)

Ballooning
UNSTABLE

Pressure gradient (VP) [ELM filaments in MAST (Andrew Kirk)]
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Resonant magnetic perturbation (RMP) by
external field coils

Induce transport at the pedestal
Degradation of the pedestal leads to the
suppression of ELMs

- RMP-ELM suppression

Promising method for ITER

However, it possesses disadvantage

— Loss of H-mode confinement
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KSTAR RMP-pump [S.K.Kim, NF 23]




RMP is characterized by Amplitude and Spectrum

e RMP is changed by adjusting the amplitude and distribution of coil currents
- Spectrum (S): Normalized current distributions

® Proper RMP (control) is essential for ELM suppression

- Sufficient I,,p for pedestal degradation
- Optimized S for suppression without core-locking (plasma disruption)

Coil amplitude Current disfribution
J (shape or spectrum) gg*10

o
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Plasma response to RMP amplitude (/zyp) is nonlinear
- Transient behavior in pedestal (confinement) degradation

Bifurcation in two different states: ELMy vs Suppressed
lapp Optimization: Balancing suppression and confinement
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KSTAR RMP-pump [S.K.Kim, NF 23]



Hysteresis in RMP response allows the confinement recovery

e RMP-hysteresis in ELM suppression (Igypin > Trvp,0u7)

e Enables confinement recovery in a suppressed state

e However, difficulty in prediction due to nonlinearity
— rt-control solution
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Adaptive control can provide simple solution to this problem

e Defined three machine states
- ELMy (when ELM presents)
- Wait (500ms at ELM get suppressed)
- Suppressed (no ELMs)

e Control policies
- ELMy: Increase Ixp—~> TO get suppression
- Wait: Hold Ix\p—~> Give time for the system to respond
- Suppressed: Decrease Ig\p 2 TO increase confinement



Adaptive amplitude control policy while maintaining simplicity in

spectrum

e The transition between machine states
- Based on detected ELMs from the Da signal

e Control policy on Igye only with fixed spectrum (empirically)
e Implemented in DIII-D and KSTAR plasma control system (PCS)
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Successful demonstration: Suppression w/ enhanced

confinement

e Enhanced confinement by adaptive Igyp conralg™ #190736 [DIII-D]
- ITER similar shape plasma

e Pedestal recovery by exploiting hysteresis
- Thermal, particle, and momentum pedestal .. Do W

- Confinement quality (Hg,) “mw
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Two simple control policies can lead to bang-bang control.
- Unfavorable oscillatory behavior

Introducing memory on the condition where state transition occurs
- Set control boundary with memory+margin(input)

- Enable convergence
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Demonstrated in KSTAR
- Leveraging long-pulse operation
Confirmed convergence

- Suppression with H-mode confinement
Confirmed multi-device capability

- Again, recovery in all pedestals, H and G
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Adaptive control is effective but we can make better

e Effective application of adaptive RMP control

_ . 0.5 % Adaptive RMP (DIII-D)
- G—O.4 for ITER basellne . Adaptive RMP (KSTAR) *
O 0.4 ITER baseline (G=0.4) -*ﬁ
e However, these control policies and state S | conventional Dil-D gl
. = 0.3
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5 0.2 4“
: . T o
e Adaptive control can be improved by o1l
introducing models and state predictor Conventional KSTAR
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Introducing more physics into adaptive control

e State detector is convenient but ineffective in avoiding undesired state
— State probing or prediction is an effective solution

e Introducing the physics model allows a more flexible control policy toward an
advanced optimized control solution
— Ex. Strategy to deliver proper/optimized RMP shape (spectrum)
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State (ELM) prediction allows earlier action to prevent it

e The conventional approach allows state transition
e Earlier switch of control policy based on state prediction
— Intermediate state with control policy that prevents transition

e For example, maintaining ELM suppressed state by prediction and RMP
control in advance to avoid state transition

/ Intermediate state

f

Machine state | —_ Precu.rsc?r Machine state Il
. or prediction
(desired)

(undesired)
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Such strategy allows more effective prevention of state transition ®

e Memory-based prevention of state transition is effective
— Ex. Stable convergence of ELM control

e However, memory can be outdated in the dynamical system

e [n addition, the memory scheme is vulnerable to sporadic system oscillation
— Lead to the unsuccessful optimization
— Ex. Maintaining over RMP current and bad confinement

KSTAR #28454

2.0

[S.K.Kim, APS-DPP 22]



Predicting the state transition can be done through precursor @

detection or prediction of state evolution

® Precursor: Patterns or signals which is observed before a transition
— Robust and straightforward to detect
—> However, not relevant to general cases

e Prediction: Foresee the future state (next 10ms, 1s,..)
—> Based on the history or unrecognized pattern
— Enables general solutions for various cases
— Howeuver, it is physically more challenging



Examples of precursor and prediction

e Examples of precursors for instabilities (Sawteeth, ELMs)
e The importance of checking multiple signals to explore it
- First step to explore the feasibility of state prediction
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Example: ELM precursor and early action to ELM prevention 5\)

e ELM avoidance/minimization during ELM suppression using precursor
- Intermediate state (PROBE) when the precursor is detected
- Control policy: Stepwise of RMP increase and hold
- After the JUMP state returns to suppressed if ELM is suppressed

JUMP state

/ EmEEE) \

f

SUP state . ELM state
(decrease RMP) — (increase RMP)




Example: ELM precursor and early action to ELM prevention

e ELM avoidance/minimization during ELM suppression using precursor
- Intermediate state (PROBE) when the precursor is detected
- Control policy: Stepwise of RMP increase and hold
- After the JUMP state returns to suppressed if ELM is suppressed

1.0
Igmp
0.5 <> tw V]
Precursor @ i y
D Detected gﬂ?_'-_l.rfpresse
L‘«-w...'._»“““"\. ((_:__ - o ..? :;.
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Time [s]

[R. Shousha IAEA-FEC 2023]



Precursor detection can also be leveraged for active state probing
- Explore the boundary where state transition occurs

Negative pulses for state probing (or detecting marginal condition)
- Reaching marginal level- Occurrence of ELM precursors
Replacing “passive” lower bound based on memory

- Control with probed value and safety margin
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Example: State probing and lower boundary control

® [xvp control with probed lower bound
- Probing leads to early detection of stability limit
- Stable ELM suppression operation with minimal ELM onset

Probing regime

KSTAR #32025
Probed stability

Precursors

5.0 7.0 Time [s] 9.0 11.0

[R. Shousha IAEA-FEC 2023]



Limitation of precursor based approach

e However, the precursor is also sensitive to plasma condition, and time margin
before state transition is not consistent
— Prediction can provide a better path
— However, developing rt-predictive model is hard

e Particularly difficult when the system is highly nonlinear with less knowledge
— No model or
— Irrelevant to real-time application

e Data-driven model can be an effective solution
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Data driven model provides effective way

Data-driven model: Model is driven (regression) by a given database
Possibly learns physics inside the data

Data can be constructed from experiments (measurement) and simulation
Effectively handles

- Model acceleration

- Model with unknown physics

Dat Machine- Data-driven
ata learning model

S = L] = %




Conventional simulation or modeling enables physics-based prediction and
optimization

In addition, it has good scalability

However, the effort is often limited because computational cost

- Ex. Linear MHD calculation takes >10s

Surrogate model can be an effective solution (acceleration)

Physiecs
Input (x) M n::lin g Output (¥)
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Example for surrogate: rt-GPEC

e Optimized RMP spectrum
- ELM suppression without driving undesired instability
- Relied on the empirical (scanned) spectrum

e Physics-based optimization [J.-K. Park(NP 18), S.M. Yang(NC 24)]
- Experimentally demonstrated physics model (GPEC code)
- Considerable computation time (~10s)

DII-D  ;  KSTAR fo

Physics
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Example for surrogate: rt-GPEC

e Model-based surrogate models (rt-GPEC) [S.K. Kim Nat. Comm 24]
- Accelerate to 1ms using real-time equilibrium info (EFIT)
- Provides real-time solution

e Integrated to adaptive Iz\p control - Enables fully optimized RMP
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Application for surrogate: Integrated ML and adaptive controls

e Successful demonstration in KSTAR tokamak [S.K. Kim Nat. Comm 24]
- Control-driven n=1 RMP (very challenging)
- Adaptive algorithm = Iyyp
- ML-surrogate - Spectrum

Confrol starts
oo [KSTAR 31873]
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Diagnostic-based driven: Capturing un/known physics/patterns @

e Database constructed from experimental diagnostic data
e Straightforward but also little knowledge of optimal mode structure

before trying (Physics understanding can guide input/structure selection)
e Strong potential in finding new physics and unrecognized patterns hidden

in the signals

Dat Machine- Data-driven
ata learning model

S = L] = %




Example: State detection (LH transition)

e Detecting LH transition using Da diagnostic [G.Shin NF 20]
- LSTM based pattern detection

H-mode & the 1st ELM detection for #21755
ELM b . ¥ +- H -

H-mode | :
Intermediate | ’ 1
L-mode [7 ; i i i i y

1.6 1.7 1.8 19 2 2.1

S8 057
S

1.6 1.8 2



Application: State detection (LH transition)

e Suppressing first ELMs is needed for future device
e Early RMP before LH transition can suppress it

e However, it has limitations osa [G.Shin NF 22]
- Easier disruption at L-mode ;:,'065: P o
- RMP can prevent H-mode access 0.8

e RMP at H-mode but before ELM g
- Accurate timing is key
- Enabled by H-mode detector
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Successful full integration to adaptive control, making high betan

and pulse length records
e Long-pulse record by integrating scheme with adaptive controller

5.5 KSTAR #31607
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Example: State detection (Alfven instability)

e AE modes reduce plasma performance. We would like to minimize them
Input: Spectrogram of each ECE channel

Process Stage 1: Enhancing spectrograms using Autoencoder network
Process Stage 2: Detecting AE modes using Recurrent Neural Network
Output: Score of AE modes in time-space

AE Detection (using RNNSs)

AE mode score [0,1]
Real-time ECE data Feature enhancement LFM
ey | (using Autoencoders) s =
Raw ECE spectrogram Enhanced ECE spectrogram
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Example: State prediction (ELMy state)

e ELMy transition prediction using edge density fluctuation (BES)
e Good example in extracting hidden patterns from multi-dimensional signal
-Trained with ~1000 DIII-D shots including H, RMP, QH-modes
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u‘ Il)“ll‘itlll1l‘ :-2'5.
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{ | Z:“';;‘ 1” Taking &
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| ) etc. |, 3000 4000
\ /) v/ ' ti
‘s BES-NN _~ ime [msec] ¢\ oetal, NF 64, 2024]

ELM prediction [K. Gill et al., MLST 5, 2024]



Example: State prediction (Tearing Mode transition)

e Tearing mode (TM) is core MHD instability, must be avoided (before onset)
e Prediction models use state information to predict TMs up to 500ms in

advance
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Application: State prediction (TM transition)

e Electron cyclotron heating (EC) is a good actuator to suppress TM
e Loop uses diagnostic data to predict TM stability and then steer EC to
preempt (avoid) TMs

Profiles

Diagnostic Data
RTCAKENN

ML-based TM
Predictor

TM Survival
EC into plasma Probability

Gyrotron Mirrors Controller

rt-TORBEAM
Gyrotron Tasks

[A. Rothstein APS-DPP 24]

Gyrotron Angles



Application: State prediction (TM transition)

e TM controller aims EC to expected mode location when plasma state

is predicted to be unstable. ,
[A. Rothstein APS-DPP 24]
ECH Control in DIII-D Shot 199607
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Well-known schemes to improve model capability in real-time: %)

Reducing model size by using ensemble average of smaller model

e The larger model makes it easier to capture complicated/nonlinear feature
- However, it can be heavy for real-time run
e Smaller model is less vulnerable to overfit or oscillation, better rt-feasibility
e [n addition, a smaller model is more robust oscillatory behavior
- However, less accurate

e Ensemble smaller models can maintain benefits with enhanced accuracy




Well-known schemes to improve model capability in real-time:

Dealing oscillatory behavior of model using low-pass filter

e Nonlinearity and sensitivity of the physics model can introduce oscillatory
behavior on output (strong sensitivity of small change in input)

® Such sensitivity is generally not true or important

e A low-pass filter can be effective in suppressing oscillations while capturing

a key aspect of model prediction
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Well-known schemes to improve model capability in real-time:

)
Filling gaps in database leveraging simulation _)

e The diagnostic-based model may have limitations in scalability
- Extrapolation is feasible but not guaranteed

e |f the physics model captures the experimental trend, they may be combined
to produce a larger database (data+sim)

e Filling the missing gaps while maintaining unveiled physics in diagnostic data
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From adaptive to fully Al/ML-based control

e Derived control strategy, directly driven by experimental

control input and output

Nonlinear control policy covering multiple states

Lower complexity of control policy with fewer states

Better handling the nonlinearity

Can provide Novel control strategy (insight) derived from unveiled physics
Reinforcement learning is one of the attractive approach



Introduction to Reinforced Learning

Key components of RL agent:

Ride safe & have fun b . : :

_ y ® Policy: It is a map from state s to action a
controlllng steer, brake: O Therider's strategy for choosing actions (steering,
peda| on the road. pedaling, balancing) based on the current state of the

bicycle to maintain balance and forward motion.
e Value function: is a predictor of future

reward

/—\(t) O Therider's assessment of how favorable a certain
- state is, considering the long-term goal of riding
Action successfully without falling.
e Model: predicts what the environment will
R(t) do next
Reward O Therider's understanding of the cause-and-effect

relationships in bicycle dynamics that predicts how
actions will change the state of the bicycle.




Avoiding tearing mode instabilities with RL at DIII-D

e Given the plasma state, S(t), which is a Subty A
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Avoiding tearing mode instabilities with RL at DIII-D
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* Design Al control: Objective is to avoid instability
while pushing up performance.

*  Preemptive control of beam power and plasma
shape can avoid the onset of tearing modes.
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Define objectives, explore patterns, develop model, and apply D)

* Control is becoming more important as plasma physics advances

* Adaptive control is an effective approach to handle the plasma system
* Predictive model is key for advancing the scheme

*  However, itis difficult due to complexity and nonlinearity

* Exploring pattern is a good starting point

* ML/AIl is bringing new insight and predictive capabilities to plasma control
- Scalability will be important aspect

Thank you
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