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Self-introduction
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Transport in fusion plasmas

* Fusion power depends on the temperature and density of plasmas: Pyg X n?{cv)

The balance between transport and sources determines\

ITER ,
the temperature and density.
' Particle and heat source
~— Particle and heat
.. transport /
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»Integrated simulations of fusion plasmas
»Turbulent transport simulations
» Development of transport models with machine learning

» Application of machine-learning-based transport models
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Integrated simulations

* Fusion plasmas are governed by a wide variety of physical phenomena.
* Integrated codes include several models that express each physical phenomenon.
* Integrated codes are used to predict plasma performance.
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Roles of transport models

Core plasma: p < 0.8

The temperature and density in the core plasma are

predicted with the transport equations.
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Core

Density n [101° m3]

0 02 04 06 08 1
' Minor radius p

Source

v’ Evaluation of the heat flux Q and particle
flux I' is the role of transport models.
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Other models required to solve transport equations

Transport eq. for the energy 5 Core

o0 (3 op 0 (9OV T
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Transport eq. for the density ; TR LS
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Minor radius p
* Each parameter like density n is averaged over the flux surface.
- Models for the magnetic equilibrium
* Energy and particle sources S
- Models for RF heating, NBI, pellets and alpha particles
* Boundary condition

> Models for the edge region v" The transport equations need to be solved
consistently with several models.
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»Integrated simulations of fusion plasmas
» Turbulent transport simulations
» Development of transport models with machine learning

» Application of machine-learning-based transport models



Turbulent transport is dominant in tokamak plasmas.

Transport in fusion plasmas

Neoclassical:

v’ Collisions between particles and distortion of the particle orbits

Turbulent:

v’ Electrostatic and electromagnetic fluctuations

Particle flux [1020 s-1]
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The first principle of plasma turbulence: Gyrokinetic theory (1/2)

e Drift-wave turbulence
v’ is driven by temperature and density gradient.
v has a lower frequency than the gyro-frequency.
v’ has a perpendicular wavelength that is shorter than parallel one.

* Boltzmann equation: (% +tE V4D aﬁ) Ful,v,1) = Ca(Fa)
v

* Thedistribution function is divided into the background and perturbed parts: F,(z,v,t) = Fy(z,v) + fi(z,v,t)

* The electrostatic potential and the magnetic field are also divided into the background and perturbed parts

0

. . . . . . a a i 1 a a =
* The perturbed distribution function satisfies:| -; +v -V + ““ (E+E+ wvxB) 2|t = CL(f.) - ‘g . 9F,
ot Mg, c ov Mg, ov

~ ~ - (1)

v" Gyrokinetic ordering:
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The first principle of plasma turbulence: Gyrokinetic theory (2/2)

* Introduction of the coordinate (&, i, &)
v & : kinetic energy + electric potential energy, u : magnetic moment, é: gyrophase
v'The gyrokinetic motion is faster than the drift wave.

* The following gyrokinetic equation is obtained by taking a gyrophase average of Eq. (1):
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* The heat and particle fluxes are calculated by solving the gyrokinetic, Poisson and Ampere equations:
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Local gyrokinetic codes

v' The wavelength perpendicular to the magnetic field is comparable to the gyroradius: L | ~ pg
v" The gyroradius is smaller than the machine size.

v The gyrokinetic equation is solved in a flux tube along a magnetic field. > Low computational cost
v The calculations are not validated beyond the local limit.

v Physical phenomena outside the flux tube are not considered.

Calculation region

Temperature T [keV]

0 02 04 06 038 1
Minor radius p
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Can we use gyrokinetic codes as a transport model?

» Evaluation of the heat flux Q and particle flux I" is
the role of transport models.

» The transport equations are solved repeatedly
(103~10° times) to predict the temperature and
density.

» (Q and T also need to be evaluated repeatedly.

Transport eq. for the energy

o (3 op 0 (0OV
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Transport eq. for the density
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Evaluation of the heat flux Q and particle flux I" with local gyrokinetic codes:

v’ It takes several days on a supercomputer.

v’ It is unrealistic to use them as a transport model.


https://texclip.marutank.net/
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Reduced transport models

Reduced transport models based on gyrokinetic codes are

used as a transport model.

v" Reduction using the linear gyrokinetic equation
v" Adjustment to nonlinear gyrokinetic simulations

v' E.g.: TGLF, QualLiKiz

v’ Reasonable agreement with experiments
v’ It takes several hours or days to predict the

temperature and density even with the
“reduced” models.

v’ The transport models can be a computational

bottleneck.
- Acceleration with machine learning

n [1019 m'3]

T. [keV]

N Experimental data

JINTRAC-QLK
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[Garcia NF2019]
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Acceleration with machine learning

Time to estimate Q and I’ Simulation time

. . Calculate fluxes 103~10° times):
Gyrokinetic codes ( )

10° core hours: several days m) Unrealistic

N

Reduced models
1073~1 core hours: a few seconds or minutes

N

Machine learning models
107° core hours: 102 seconds m) < A few hours

Several hours or days
(with parallel computation)

v' 10! times speedup
with machine learning
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»Integrated simulations of fusion plasmas
» Turbulent transport simulations
» Development of transport models with machine learning

» Application of machine-learning-based transport models
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Progress in machine-learning-based transport models

* Neural networks (NNs) are used as a machine-learning model.
 The NN-based transport models are implemented in the integrated simulations.

Development timeline

» The first model predicts heat fluxes estimated for the DIII-D plasmas [Meneghini
NF2014].

» QLKNN learns QualiKiz calculations [Citrin NF2015].
» TGLF-NN learns TGLF calculations [Meneghini NF2017].

» DeKANIS learns gyrokinetic calculations and particle fluxes estimated for JT-60U
plasmas [Narita NF2019].

> ...
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NN-based transport models are practically in use.

* The original model: TGLF * The original model: QualLiKiz
 TGLF-NN is implemented in the integrated- * QLK-NN is applied to optimizing of the ITER
modeling framework OMFIT. operation scenario.
;dw.'—if"ggggg‘;gggggi‘gggaib'n'u'ré Pedestal | N e

OMFITprofiles |
Experimental profiles |;
TGYRO |

Transport + Pedestal
TGLF-NN EPED1-NN

uonN|oAd
JU1IND %3 SDINOS
OM13INO
STRAHL
Impurity Sources

[0. Meneghini NF2021,

9 9.5 10 10.5 11

B.C. Lyons PoP2023] ... LLLL € 2 J i ’ I I MA
Plasma current

12

[S. van Mulders NF2021]

v" NN-based transport model is an option of the transport models
used in integrated simulations.
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Neural network

Neural network (NN) is

* one of the machine learning models.

* the backbone of the deep-learning algorithms.
QO :unit
w : weight
b : bias

A simple model
* yis calculated with weighted sum of the input x:

9 =f(wy X x; +w, X Xg + -+ Wy Xxp+b)
/o Y /
Activation function Liner model

A model with hidden layers
* vy is calculated by computing the weighted sum repeatedly.
* If one hidden layer is added,
h p
9= f12 ) f1 (Z xwy) + b,-[”> wie + b,
j=1 i=1

* Weights w and biases b are optimized by learning.



Emulation of reduced models

Input: plasma parameters on
the flux surface in question

e Temperature gradient

Density gradient

Minor radius

Temperature ratio

Local plasma
parameters

Temperature T [keV]

| | | |
0 02 04 06 038 1

Minor radius p

Reduced model
Output

@ Replacement * Heatflux@Q

e Particle flux I’
Neural-network

model

v’ Learning on the calculation results from reduced
models: Supervised learning
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Construction of NN-based transport models

1. Training datasets created by existing models

—_

nput | R/L. = 2.2

R/Lr - 69 'L plasma parameters

o

Reduced models }

Parallel
computation

First-princ inetic codes
A few seconds Q

Output: Particle fluxI;  Heat flux Q4
v" Multiple calculations in a wide range of
plasma parameters

Training data >
/ Input Output \

R/L, =22 r=Tr,
R/Lr =6.9 JL Q=01

\\/ \//

2. Supervised learning

J9Ae| indu

!

J9Ae| 1ndinQ JoAe| uappiH

f(Z xwy(i,1) + b1<1)> |

i=1

v" Weights w and biases b are optimized to
reproduce the training datasets.
v' T and Q are calculated in about 10™2 seconds,
mimicking the reduced model.
- Surrogate models

21/30
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Programming language

* Construction of the NN models: Python
v" A wide variety of machine learning related packages
v’ Slow calculation speed

* Integrated codes: Fortran
v" High calculation speed and high maintainability
- Numerical simulations in science and technology are often performed with Fortran programs.

v' The NN models constructed with Python are converted into a Fortran program,
and introduced to the integrated codes.
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»Integrated simulations of fusion plasmas
»Turbulent transport simulations
» Development of transport models with machine learning

» Application of machine-learning-based transport models



NN-based transport model DeKANIS
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Most of the NN-based transport models are built to mimic the existing models (surrogate

models), but the DeKANIS project started with the quasilinear flux modeling.

Estimated error by Gaussian

is founded on a combination of gyrokinetic = —— DeKANIS —— experiment

Process Regression (1o, 30)
I I 5 T

calculations and experimental data. ° @ ° ©) ;
_ 4 . 4 . 4
* can detail transport processed related to ZE s : = =3 !
density and temperature profile predictions. 3 , -\M\{’\W i o =,
* isrecently expanded to include hydrogen "l 1 § 8 '
0

JT-60U

(©

1 1 1
0.4 0.6 02
p

1
0.2 0.8

isotope effects.

Other gyrokinetic calculation based NN model: GENE-NN [Citrin PoP2023]

! L
0.4 0.6

0.8



Fluxes predicted by DeKANIS

* Particle and heat fluxes given by the linear gyrokinetic equation
B . - \24k2J2F, R mqv? 3\ R  e,BR
— 3 . g0+ a,M a 9 a
Lo = </d vRe [(d’k@ ””A"“f’) B2RL, (Lna * ( 2T, 2) Lo, | Toke W)D

. - — N2ik2J2F, v mav? [ R mav® 3\ R | e.BR
. 3 _ . — g0+ a,M ] a 2 a
f \Qa B </d URG !(@kﬂ L”Allha) BERﬁ“ 2 (L'”'u + ( 2)1”’”' 2) LT‘: + ':Pf“l"ﬂ )] >S
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Simplified for
electrons
~ _ _ R R
Particle flux: I'c =D { — +Ct—— + Cp * lon heat flux:
. i i Lne LTe
o ~ Xi,eff _ R T Tvl
. o R R L= = F
— Heatflux: (e = Xe (ONL— + L_ + CHP) Qi Xe.eff Xe,e L1 ne T
: Ne Te

o< (¢ — VnAn)Z /

: The turbulent fluctuation amplitude

v' Cr, Cp, Cy and Cyp are not constant.

v’ T, and Q,, are given by the linear combination of the nonlinear terms.

~-: normalized parameter


https://texclip.marutank.net/
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Structure of DeKANIS

_ _ (R R
Fe:D(L_+CTL_+CP) B

e te v' 6 coefficients (Cr, Cp, Cn, Cup, Xeeff/ Xiefr, D) are
R R + CHP) estimated with a NN and D, del.

Qe = Xe (CN +
Lne LT / —_ . . .
Xe IS calculated not to break a restriction.

[S]

g, = Meft o R ny T
1 )Ze,eff ©° LT1 Te Te

NN model R/L, —

R/I-Te —>
Saturation model:
~:‘ +

\\‘\\ l_)model — f(EBJ )_/max' )

Z %}\\\_

Training data:
linear calculations of the
8YrokiTnetic code GKW _ T

v The linear calculations are ~103 times faster than the nonlinear ones. v’ Based on the experimental data
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Hydrogen isotope effects

Most fusion plasma experiments have been performed
with hydrogen or deuterium.

The effective fusion reaction is expected with deuterium
and tritium (DT) plasmas.

=» Isotope effects are crucial in predicting DT plasma

performance with our knowledge.

Positive isotope effects are observed in several devices.

v The higher temperature and density with the heavier
isotope

The gyrokinetic codes can capture the experimental trend
[Nakata PRL2017, Garcia PPCF2022].

v" The lower flux (~ diffusivity) with the heavier isotope

v" DeKANIS is able to emulate the trend using the NN
model trained on the gyrokinetic calculations.

1,2
6

Quasilinear
diffusivity v/k
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T | | I T 1TT ‘ | L | T T
A hydrogen |1 IT-60U
o deuterium |1 [Urano NF2013]
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Training datasets of DeKANIS

Transport coefficients used

Plasma parameters used
for outputs (7 columns)

Input parameters: for inputs (13 columns)
R/LTLI R/LTer R/LTi; [ k o A \
ni/e, Te/Ti, B, Vee, N R/an R/LTC T MYy Cr Cp Cn Cyp X—'E_?"ﬂff ko Ymax
ql S, € K, 5; my Xi,eff
Group |: Experimental values
306 rows
Gyrokinetic code GKW

Parameter scan
based on group |

v Experimental values in group | are taken from JT-60U and JET D plasmas.
v' Density gradientR/L,,, electron and ion temperature gradient R/LTei and the ion mass number m; change

in the parameter scan in group Il.


https://texclip.marutank.net/

Integrated simulations including isotope effects

* DeKANIS is implemented in the integrated code TOPICS.

* Integrated simulations of ITER plasmas heated by electron cyclotron resonance

v The electron temperature T, and density n, are higher for the heavier ion mass case.
v' T is higher for the H case due to the the collisional equipartition. [cf. Schneider NF2017]

20 I I I I

N
o

AN
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PBOS(y,2): m
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Tg increases with m;.
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Electron temperature T, [keV]
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o
Electron density n, [10°m-3]
N

0 ] ]
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o

] ]
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Summary

» Integrated simulations of fusion plasmas
v’ Integrated codes are used to predict plasma performance considering a wide variety
of physical phenomena consistently.
» Turbulent transport simulations
v’ Gyrokinetic theory: The first principle of plasma turbulence
v Transport models be a computational bottleneck.

» Development of transport models with machine learning

v" The neural-network models have dramatically accelerated integrated simulations.
» Application of machine-learning-based transport models:

Improving both accuracy and speed

v' The hydrogen isotope effect captured by the gyrokinetic codes has been incorporated
into integrated simulations.
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