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Transport in fusion plasmas

ITER

Particle and heat 
transport

• Fusion power depends on the temperature and density of plasmas: 𝑃NF ∝ 𝑛2 𝜎𝑣

Particle and heat source

©️ ITER organization

Minor radius

Density [1019 m-3]

Minor radius

Temperature 
[keV]✓ Prediction of heat and particle fluxes

➔ Prediction of performance in future devices

✓ Turbulent transport is dominant in tokamak plasmas.

➔ Turbulent transport models are the key to the 
prediction performance.

The balance between transport and sources determines 
the temperature and density.
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➢Integrated simulations of fusion plasmas

➢Turbulent transport simulations

➢Development of transport models with machine learning

➢Application of machine-learning-based transport models
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Integrated simulations

• Fusion plasmas are governed by a wide variety of physical phenomena.

• Integrated codes include several models that express each physical phenomenon.

• Integrated codes are used to predict plasma performance.
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Roles of transport models

• Core plasma: 𝜌 ≲ 0.8

• The temperature and density in the core plasma are 
predicted with the transport equations.

Transport eq. for the energy

Transport eq. for the density

Core

Time evolution Transport Source

\begin{align*}
\frac{\partial}{\partial t}\left(\frac{3}{2}n_aT_a\right)=-\frac{\partial\rho}{\partial V}\frac{\partial}{\partial\rho}\left(\frac{\partial 
V}{\partial\rho}\textcolor[rgb]{0.8,0,0}{Q_a}\right)+S_{\mathrm{e},a}
\end{align*}

\begin{align*}
\frac{\partial n_a}{\partial t}=-\frac{\partial\rho}{\partial V}\frac{\partial}{\partial\rho}\left(\frac{\partial 
V}{\partial\rho}\textcolor[rgb]{0.8,0,0}{\Gamma_a}\right)+S_{\mathrm{p},a}
\end{align*}

✓ Evaluation of the heat flux 𝑄 and particle 
flux Γ is the role of transport models.
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Other models required to solve transport equations

Transport eq. for the energy

Transport eq. for the density

\begin{align*}
\frac{\partial}{\partial t}\left(\frac{3}{2}n_aT_a\right)=-\frac{\partial\rho}{\partial V}\frac{\partial}{\partial\rho}\left(\frac{\partial 
V}{\partial\rho}\textcolor[rgb]{0.8,0,0}{Q_a}\right)+S_{\mathrm{e},a}
\end{align*}

\begin{align*}
\frac{\partial n_a}{\partial t}=-\frac{\partial\rho}{\partial V}\frac{\partial}{\partial\rho}\left(\frac{\partial 
V}{\partial\rho}\textcolor[rgb]{0.8,0,0}{\Gamma_a}\right)+S_{\mathrm{p},a}
\end{align*}

• Each parameter like density 𝑛 is averaged over the flux surface.

→Models for the magnetic equilibrium

• Energy and particle sources 𝑆

→ Models for RF heating, NBI, pellets and alpha particles

• Boundary condition

→ Models for the edge region ✓ The transport equations need to be solved 
consistently with several models.

Core
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➢Integrated simulations of fusion plasmas

➢Turbulent transport simulations

➢Development of transport models with machine learning

➢Application of machine-learning-based transport models
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Turbulent transport is dominant in tokamak plasmas.

Transport in fusion plasmas

• Neoclassical:

✓ Collisions between particles and distortion of the particle orbits

• Turbulent:

✓ Electrostatic and electromagnetic fluctuations
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The first principle of plasma turbulence: Gyrokinetic theory (1/2)

• Drift-wave turbulence

✓ is driven by temperature and density gradient.

✓ has a lower frequency than the gyro-frequency.

✓ has a perpendicular wavelength that is shorter than parallel one.

• Boltzmann equation：

• The distribution function is divided into the background and perturbed parts：

• The electrostatic potential and the magnetic field are also divided into the background and perturbed parts

• The perturbed distribution function satisfies:

Distribution function in the 6D phase space at time 𝑡

– (1)

✓ Gyrokinetic ordering：

\begin{align*}
\frac{\omega}{\Omega}\sim \frac{L_\perp}{L_\parallel}\sim \frac{f}{F}\sim \frac{e\tilde{\phi}}{T}\sim \frac{\tilde{B}}{B} \ll 1
\end{align*}

https://texclip.marutank.net/
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The first principle of plasma turbulence: Gyrokinetic theory (2/2)

• Introduction of the coordinate 𝜀, 𝜇, 𝜉

✓𝜀 : kinetic energy + electric potential energy, 𝜇 : magnetic moment, 𝜉: gyrophase

✓The gyrokinetic motion is faster than the drift wave.

• The following gyrokinetic equation is obtained by taking a gyrophase average of Eq. (1):

• The heat and particle fluxes are calculated by solving the gyrokinetic, Poisson and Ampere equations:
Nonlinear term
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Local gyrokinetic codes

[Beer PoP1995]

Calculation region

• Local limit

✓ The wavelength perpendicular to the magnetic field is comparable to the gyroradius:

✓ The gyroradius is smaller than the machine size.

• Local (flux tube) gyrokinetic codes

✓ The gyrokinetic equation is solved in a flux tube along a magnetic field. → Low computational cost

✓ The calculations are not validated beyond the local limit.

✓ Physical phenomena outside the flux tube are not considered.

\begin{align*}
L_\perp \sim 
\rho_\mathrm{s}

Flux tube
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Can we use gyrokinetic codes as a transport model?

➢ Evaluation of the heat flux 𝑄 and particle flux Γ is 
the role of transport models.

➢ The transport equations are solved repeatedly 
(103~106 times) to predict the temperature and 
density.

➢ 𝑄 and Γ also need to be evaluated repeatedly.

Transport eq. for the energy

Transport eq. for the density

\begin{align*}
\frac{\partial}{\partial t}\left(\frac{3}{2}n_aT_a\right)=-\frac{\partial\rho}{\partial V}\frac{\partial}{\partial\rho}\left(\frac{\partial 
V}{\partial\rho}\textcolor[rgb]{0.8,0,0}{Q_a}\right)+S_{\mathrm{e},a}
\end{align*}

\begin{align*}
\frac{\partial n_a}{\partial t}=-\frac{\partial\rho}{\partial V}\frac{\partial}{\partial\rho}\left(\frac{\partial 
V}{\partial\rho}\textcolor[rgb]{0.8,0,0}{\Gamma_a}\right)+S_{\mathrm{p},a}
\end{align*}

Evaluation of the heat flux 𝑄 and particle flux Γ with local gyrokinetic codes:

✓ It takes several days on a supercomputer.

✓ It is unrealistic to use them as a transport model.

https://texclip.marutank.net/
https://texclip.marutank.net/
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Reduced transport models

• Reduced transport models based on gyrokinetic codes are 
used as a transport model.

✓ Reduction using the linear gyrokinetic equation

✓ Adjustment to nonlinear gyrokinetic simulations

✓ E.g.: TGLF, QuaLiKiz

✓ Reasonable agreement with experiments

✓ It takes several hours or days to predict the 
temperature and density even with the 
“reduced” models.

✓ The transport models can be a computational 
bottleneck.

→ Acceleration with machine learning

[Garcia NF2019]
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Acceleration with machine learning

Time to estimate 𝑄 and Γ

Gyrokinetic codes
105 core hours: several days

Reduced models
10−3~1 core hours: a few seconds or minutes

Machine learning models
10−6 core hours: 10−3 seconds

Simulation time
(Calculate fluxes 103~106 times):

Unrealistic

Several hours or days
(with parallel computation)

< A few hours
✓ 1011 times speedup 

with machine learning



16/30

➢Integrated simulations of fusion plasmas

➢Turbulent transport simulations

➢Development of transport models with machine learning

➢Application of machine-learning-based transport models
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Progress in machine-learning-based transport models

• Neural networks (NNs) are used as a machine-learning model.

• The NN-based transport models are implemented in the integrated simulations.

Development timeline

➢ The first model predicts heat fluxes estimated for the DIII-D plasmas [Meneghini
NF2014].

➢ QLKNN learns QuaLiKiz calculations [Citrin NF2015].

➢ TGLF-NN learns TGLF calculations [Meneghini NF2017].

➢ DeKANIS learns gyrokinetic calculations and particle fluxes estimated for JT-60U 
plasmas [Narita NF2019].

➢ ...
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NN-based transport models are practically in use.
Nucl. Fusion 61 (2021) 086019 S. Van Mulders et al

Table 6. Heating mix. Key performance indicators areshown for theoperation pointsmaximizing
the fusion gain Q with q > 1 and Psep > 1.2PLH by optimizing electron cyclotron deposition
location ρec, total plasma current I p and ion cyclotron heating power Pic (for given neutral beam

power Pnb = 0/ 16.5/33 MW, electron cyclotron power Pec = 20 MW and density
⟨ne⟩line
ne,Gw

= 0.9

and 0.8).

fGw I p [MA] ρec Pfus [MW] Paux [MW] nb + ec + ic Iaux [MA] Q Upl [mV] fni fbs

0.9 9.6 0.27 286 0 + 20 + 29 1.2 5.8 15.1 0.57 0.44

0.8 10.2 0.29 306 0 + 20 + 19 1.4 7.8 14.3 0.55 0.42

0.9 10.1 0.28 321 16.5 + 20 + 11 2.5 6.7 12.8 0.66 0.42

0.8 10.6 0.31 341 16.5 + 20 + 1 2.8 9.1 12.0 0.65 0.39

0.9 10.0 0.29 319 33 + 20 + 0 3.9 6.0 6.8 0.81 0.42

0.8 10.5 0.31 339 33 + 20 + 0 4.5 6.4 5.5 0.83 0.40

Figure 15. Electron cyclotron power upgrade. The colored quadrangles circumscribe the operational window with a Greenwald density
fraction f G = ⟨ne⟩l ine/ ne,Gw within the range [0.8, 0.9] and a fusion gain Q > 5, with the availability of respectively 20 MW (blue) and
40 MW (red) of electron cyclotron power. The four vertices of the quadrangles represent the scenarioswith optimized electron cyclotron
deposition location, corresponding to Q = 5 (star symbol on the low Ip side) and the maximum Ip for which q > 1 can be maintained
(rectangle symbol on the high Ip side). The relative levels of non-inductively driven current fni = Ini / Ip of these scenarios are also indicated
on the f gure. The differences in fusion power Pfus are illustrated by a set of diagonal lines. As discussed in section 4.1, the pedestal pressure
is assumed to be linearly increasing with plasma current Ip. A density reduction at given plasma current is counteracted by a temperature
pedestal increase, keeping the pedestal pressure constant.

the neutral beam current density prof le is relatively close to

themagnetic axis in thepresent simulations, areduced neutral

beam power can relax therequired amount of off-axiselectron

cyclotron current to maintain q > 1.

Finally, one might consider a further reduction of the neu-

tral beam power down to zero. Looking for amaximumfusion

gain Q, with q > 1 and Psep > 1.2PLH, an optimum is found

with Pec = 42 MW (see f nal row table 5). For the selected

density, an electron cyclotron power slightly in excess of the

upgraded electron cyclotron power capability is required in

absence of any neutral beam power. Although a high fusion

gain Q = 9.4 is projected, a major contribution of inductive

current drive is required (Upl = 16.5 mV and fni = 0.58).

Note that scenarios without neutral beam injection at lower

18

✓ NN-based transport model is an option of the transport models 
used in integrated simulations.

[S. van Mulders NF2021]

[O. Meneghini NF2021, 
B.C. Lyons PoP2023]

Plasma current

D
en

si
ty

• The original model: QuaLiKiz

• QLK-NN is applied to optimizing of the ITER 
operation scenario.

• The original model: TGLF

• TGLF-NN is implemented in the integrated-
modeling framework OMFIT.
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Neural network (NN) is

• one of the machine learning models.

• the backbone of the deep-learning algorithms.

A simple model

• 𝑦 is calculated with weighted sum of the input 𝑥:

ො𝑦 = 𝑓 𝑤1 × 𝑥1 +𝑤2 × 𝑥2 +⋯+𝑤𝑝 × 𝑥𝑝 + 𝑏

A model with hidden layers

• 𝑦 is calculated by computing the weighted sum repeatedly.

• If one hidden layer is added,

ො𝑦𝑘 = 𝑓[2]෍

𝑗=1

ℎ

𝑓[1] ෍

𝑖=1

𝑝

𝑥𝑖𝑤𝑖,𝑗
[1]

+ 𝑏𝑗
[1]

𝑤𝑗,𝑘
[2]

+ 𝑏𝑘
[2]
.

• Weights 𝑤 and biases 𝑏 are optimized by learning.

Neural network
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Liner model

Input layer Hidden layer(s) Output layer

: unit
𝑤 : weight
𝑏 : bias

+𝑏

Activation function

𝑥1

𝑥2

𝑥𝑝

ො𝑦1

Adding hidden layers

ො𝑦2

ො𝑦𝑞



20/30

Emulation of reduced models

Minor radius 𝜌

Te
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V
]

Input: plasma parameters on 
the flux surface in question

• Temperature gradient

• Density gradient

• Minor radius

• Temperature ratio

• ...

Output

• Heat flux 𝑄

• Particle flux Γ

Reduced model

Neural-network 
model

Local plasma 
parameters

Replacement

✓ Learning on the calculation results from reduced 
models: Supervised learning
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Reduced models
First-principle-based gyrokinetic codes

Construction of NN-based transport models

𝑥1: Τ𝑅 𝐿𝑛 𝑥2: Τ𝑅 𝐿𝑇 𝑥𝑛
. . .

Τ𝑅 𝐿𝑛 = 2.2
Τ𝑅 𝐿𝑇 = 6.9

Input

.

.
Plasma parameters

1. Training datasets created by existing models

Parallel 
computation

2. Supervised learning

𝑦1: Γ 𝑦2: 𝑄
Training data

✓ Multiple calculations in a wide range of 
plasma parameters

Τ𝑅 𝐿𝑛 = 2.2
Τ𝑅 𝐿𝑇 = 6.9

Γ = Γ1
𝑄 = 𝑄1

.

.

A few seconds

Input Output

Output: 

In
pu

t layer
H

id
d

en
 layer

O
u

tpu
t layer

✓ Weights 𝑤 and biases 𝑏 are optimized to 
reproduce the training datasets.

✓ Γ and 𝑄 are calculated in about 10−3 seconds, 
mimicking the reduced model.
→Surrogate models

𝒇 ෍

𝒊=𝟏

𝒏

𝒙𝒊𝒘𝟏 𝒊, 𝟏 + 𝒃𝟏 𝟏
.
.

.

.
.
.

Particle flux Γ1 Heat flux 𝑄1

.

.
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Programming language

• Construction of the NN models: Python

✓ A wide variety of machine learning related packages

✓ Slow calculation speed

• Integrated codes: Fortran

✓ High calculation speed and high maintainability

→ Numerical simulations in science and technology are often performed with Fortran programs.

✓ The NN models constructed with Python are converted into a Fortran program, 
and introduced to the integrated codes.
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➢Integrated simulations of fusion plasmas

➢Turbulent transport simulations

➢Development of transport models with machine learning

➢Application of machine-learning-based transport models
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NN-based transport model DeKANIS

Most of the NN-based transport models are built to mimic the existing models (surrogate 
models), but the DeKANIS project started with the quasilinear flux modeling.

DeKANIS (Detailing Kinetic fluxes with Artificial Neural networks for Insights into Simulations) 
[Narita NF2019, 2021, CPP2023, IAEA FEC2023]

JT-60U

Other gyrokinetic calculation based NN model: GENE-NN [Citrin PoP2023]

• is founded on a combination of gyrokinetic 
calculations and experimental data.

• can detail transport processed related to 
density and temperature profile predictions.

• is recently expanded to include hydrogen 
isotope effects.
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Fluxes predicted by DeKANIS

∝ ෨𝜙 − 𝑣∥ ሚ𝐴∥
2

: The turbulent fluctuation amplitude

✓ 𝐶T, 𝐶P, 𝐶N and 𝐶HP are not constant.

✓ തΓe and ത𝑄e are given by the linear combination of the nonlinear terms.

Particle flux：

Heat flux:

\begin{align*}  
\bar{\Gamma}_\mathrm{e}=\textcolor[rgb]{1,0,0}{\bar{D}}\left(\frac{R}{L_{n_\mathrm{e}}}+\textcolor[rgb]{1,0,0}{C_\mathrm{T}}\frac{R}{L_{T_\mathrm{e}}}+\textcolor[rgb]{1,0,0}{C_\mathrm{P}}\right)\end{align*}

\begin{align*}  
\bar{Q}_\mathrm{e}=\textcolor[rgb]{1,0,0}{\bar{\chi}_\mathrm{e}}\left(\textcolor[rgb]{1,0,0}{C_\mathrm{N}}\frac{R}{L_{n_\mathrm{e}}}+\frac{R}{L_{T_\mathrm{e}}}+\textcolor[rgb]{1,0,0}{C_\mathrm{HP}}\right)\end{align*}

: diagonal : off-diagonal

• Ion heat flux:

\begin{align*}
\bar{Q}_\mathrm{i}=\textcolor[rgb]{1,0,0}{\frac{\bar{\chi}_\mathrm{i,eff}}{\bar{\chi}_\mathrm{e,eff}}}\bar{\chi}_\mathrm{e,eff}\frac{R}{L_{T_\mathrm{i}}}\frac{n_\mathrm{i}}{n_\mathrm{e}}\frac{T_\mathrm{i}}{T_\mathrm{e}}

\end{align*}

ഥ⋯: normalized parameter

\begin{eqnarray*} \Gamma_a=\left\langle\int\mathrm{d}^3\bm{v}
 \mathrm{Re}\left[\left(\tilde{\phi}_{k_\theta}-v_\parallel\tilde{A}_{\parallel k_\theta}\right)^2
 \frac{ik^2_\theta J^2_0F_{a,\mathrm{M}}}{B^2R\mathcal{L}_a}
 \left(\frac{R}{L_{n_a}}+\left(\frac{m_av^2}{2T_a}-\frac{3}{2}\right)\frac{R}{L_{T_a}}+\frac{e_aBR}{T_ak_\theta}\omega\right)
 \right]

\begin{eqnarray*} Q_a=\left\langle\int\mathrm{d}^3\bm{v}
 \mathrm{Re}\left[\left(\tilde{\phi}_{k_\theta}-v_\parallel\tilde{A}_{\parallel k_\theta}\right)^2
 \frac{ik^2_\theta J^2_0F_{a,\mathrm{M}}}{B^2R\mathcal{L}_a}
 \textcolor[rgb]{1,0,0}{\frac{m_av^2}{2}}
 \left(\frac{R}{L_{n_a}}+\left(\frac{m_av^2}{2T_a}-\frac{3}{2}\right)\frac{R}{L_{T_a}}+\frac{e_aBR}{T_ak_\theta}\omega\right)

Simplified for 
electrons

• Particle and heat fluxes given by the linear gyrokinetic equation

https://texclip.marutank.net/
https://texclip.marutank.net/
https://texclip.marutank.net/
https://texclip.marutank.net/
https://texclip.marutank.net/
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\begin{align*}  
\bar{\Gamma}_\mathrm{e}=\textcolor[rgb]{1,0,0}{\bar{D}}\left(\frac{R}{L_{n_\mathrm{e}}}+\textcolor[rgb]{1,0,0}{C_\mathrm{T}}\frac{R}{L_{T_\mathrm{e}}}+\textcolor[rgb]{1,0,0}{C_\mathrm{P}}\right)\end{align*}

\begin{align*}  
\bar{Q}_\mathrm{e}=\textcolor[rgb]{1,0,0}{\bar{\chi}_\mathrm{e}}\left(\textcolor[rgb]{1,0,0}{C_\mathrm{N}}\frac{R}{L_{n_\mathrm{e}}}+\frac{R}{L_{T_\mathrm{e}}}+\textcolor[rgb]{1,0,0}{C_\mathrm{HP}}\right)\end{align*}

\begin{align*}
\bar{Q}_\mathrm{i}=\textcolor[rgb]{1,0,0}{\frac{\bar{\chi}_\mathrm{i,eff}}{\bar{\chi}_\mathrm{e,eff}}}\bar{\chi}_\mathrm{e,eff}\frac{R}{L_{T_\mathrm{i}}}\frac{n_\mathrm{i}}{n_\mathrm{e}}\frac{T_\mathrm{i}}{T_\mathrm{e}}

\end{align*}

Structure of DeKANIS

✓ 6 coefficients (𝐶T, 𝐶P, 𝐶N, 𝐶HP, Τҧ𝜒e,eff ҧ𝜒i,eff, ഥ𝐷) are 

estimated with a NN and ഥ𝐷model.

✓ ҧ𝜒e is calculated not to break a restriction.

✓ The linear calculations are ~103 times faster than the nonlinear ones.

Saturation model:
ഥ𝑫𝐦𝐨𝐝𝐞𝐥 = 𝒇 ഥ𝒌𝜽, ഥ𝜸𝐦𝐚𝐱, …

Training data:
linear calculations of the 
gyrokinetic code GKW

NN model

✓ Based on the experimental data

https://texclip.marutank.net/
https://texclip.marutank.net/
https://texclip.marutank.net/
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Hydrogen isotope effects

• Most fusion plasma experiments have been performed 
with hydrogen or deuterium.

• The effective fusion reaction is expected with deuterium 
and tritium (DT) plasmas.

➔ Isotope effects are crucial in predicting DT plasma 
performance with our knowledge.

• Positive isotope effects are observed in several devices.

✓ The higher temperature and density with the heavier 
isotope

• The gyrokinetic codes can capture the experimental trend 
[Nakata PRL2017, Garcia PPCF2022].

✓ The lower flux (~ diffusivity) with the heavier isotope

✓ DeKANIS is able to emulate the trend using the NN 
model trained on the gyrokinetic calculations.

[Urano NF2013] 

JT-60U
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Training datasets of DeKANIS

\begin{table} \label{table:exp}   \begin{center}     \begin{tabular}{ccccccccccc} \hline       $R/L_{n_\mathrm{e}}$  $R/L_{T_\mathrm{e}}$  $\cdots$  \textcolor[rgb]{1,0,0}{$m_\mathrm{i}$}  $C_\mathrm{T}$  $C_\mathrm{P}$ $C_\mathrm{N}$  
$C_\mathrm{HP}$  $\frac{\bar{\chi}_\mathrm{e,eff}}{\bar{\chi}_\mathrm{i,eff}}$  $\bar{k}_\theta$  $\bar{\gamma}_\mathrm{max}$\\ \hline              $\ddots$                              \\                               \\
                            \\                     $\ddots$  $\vdots$ \\                                  $\cdots$           \\       \hline     \end{tabular}   \end{center} \end{table}

Input parameters:
Τ𝑅 𝐿𝑛, Τ𝑅 𝐿𝑇e, Τ𝑅 𝐿𝑇i, 

Τ𝑛i 𝑛e, Τ𝑇e 𝑇i, 𝛽, ҧ𝜈ee, 
𝑞, 𝑠, 𝜀, 𝜅, 𝛿, 𝑚i

✓ Experimental values in group I are taken from JT-60U and JET D plasmas.

✓ Density gradient Τ𝑅 𝐿𝑛, electron and ion temperature gradient Τ𝑅 𝐿𝑇e,𝑖 and the ion mass number 𝑚i change 

in the parameter scan in group II.

Experimental values

Parameter scan
based on group I

Gyrokinetic code GKW

Plasma parameters used 
for inputs (13 columns)

Transport coefficients used 
for outputs (7 columns)

Group I:
306 rows

Group II:
24,051 rows

https://texclip.marutank.net/
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Integrated simulations including isotope effects

✓ The electron temperature 𝑇e and density 𝑛e are higher for the heavier ion mass case.

✓ 𝑇i is higher for the H case due to the the collisional equipartition. [cf. Schneider NF2017]
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Summary

➢ Integrated simulations of fusion plasmas

✓ Integrated codes are used to predict plasma performance considering a wide variety 
of physical phenomena consistently.

➢ Turbulent transport simulations

✓ Gyrokinetic theory: The first principle of plasma turbulence

✓ Transport models be a computational bottleneck.

➢ Development of transport models with machine learning

✓ The neural-network models have dramatically accelerated integrated simulations.

➢ Application of machine-learning-based transport models:
Improving both accuracy and speed

✓ The hydrogen isotope effect captured by the gyrokinetic codes has been incorporated
into integrated simulations.
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