

Introduction to Big and Deep Data Analysis Methods

Rick Archibald Oak Ridge National Laboratory USA

ITER International School Dec 9-13, 2024 Nagoya, Japan

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Machine Learning Basics
- SAS Federated Learning
- FREDA Machine Learning Grid Generation

Machine Learning Basics

Quick Overview of Machine Learning

- K-Nearest Neighbors Algorithm (KNN)
- Support Vector Machines (SVM)
- Gaussian Process Learning (GPL) (where similarity is typically measured using the Euclidean distance measured using the Euclidean distance metric for continuous continuous continuous continuous continuous continuous continuous continuous continuous cont \blacksquare $F(s_{n,s})s_{n,s}t_{n,s} \sim N[\kappa(s_{n,s},s_{n,s})[\kappa(s_{n,s},s_{n,s})+\sigma^2\Gamma]t_{n,s}$ **example,** \blacksquare
- Decision Tree

- Deep Neural Networks (DNN)
- Bayesian Neural Network

ARTIFICIAL INTELLIGENCE A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Previously, we described the NN algorithm, which makes ^a prediction by assigning the class label or continuous target value of the most similar training example to the query point

 $\begin{split} \mathbf{k} \left(\mathcal{S}_{x,N}, \mathcal{S}_{x,N} \right) = \mathbf{k} \left(\mathcal{S}_{x,N}, \mathcal{S}_{x,N} \right) \left[\mathbf{k} \left(\mathcal{S}_{x,N}, \mathcal{S}_{x,N} \right) + \sigma^2 \mathbf{I} \right]^{-1} \mathbf{k} \left(\mathcal{S}_{x,N}, \mathcal{S}_{x,N} \right) \end{split}$

K-Nearest Neighbors Algorithm

- Minimal or No training!
• Minimal or No training!
- More data greater accuracy
- ***** Prediction and storage is computational challenge

Support Vector Machines

Support Vector Machines

Gaussian Kernel capable of classifying complicated domains

$$
K(\mathbf{x}, \mathbf{y}) = e^{-\gamma \|\mathbf{x} \cdot \mathbf{y}\|^2}
$$

Gaussian Process Learning

Given the sets $\mathcal{S}_{x,N} := \{x_1,\ldots,x_N\}, \mathcal{S}_{f,N} := \{f(x_1),\ldots,f(x_N)\},\$ and $\mathcal{S}_{\tilde{x},\tilde{N}} := \{\tilde{x}_1,\ldots,\tilde{x}_{\tilde{N}}\}$

$$
\nonumber F(\mathcal{S}_{\tilde{x},\tilde{N}})|\mathcal{S}_{x,N},\mathbf{f}_{\mathcal{S}_{x,N}} \quad \sim \quad \mathcal{N}\Bigg(\mathbf{K}\Big(\mathcal{S}_{\tilde{x},\tilde{N}},\mathcal{S}_{x,N}\Big)\bigg[\mathbf{K}\Big(\mathcal{S}_{x,N},\mathcal{S}_{x,N}\Big) + \sigma^2\mathbf{I}\bigg]^{-1}\mathbf{f}_{\mathcal{S}_{x,N}}, \\ \quad \mathbf{K}\Big(\mathcal{S}_{\tilde{x},\tilde{N}},\mathcal{S}_{\tilde{x},\tilde{N}}\Big) - \mathbf{K}\Big(\mathcal{S}_{\tilde{x},\tilde{N}},\mathcal{S}_{x,N}\Big)\bigg[\mathbf{K}\Big(\mathcal{S}_{x,N},\mathcal{S}_{x,N}\Big) + \sigma^2\mathbf{I}\bigg]^{-1}\mathbf{K}\Big(\mathcal{S}_{x,N},\mathcal{S}_{\tilde{x},\tilde{N}}\Big)\bigg].
$$

where $K(\cdot, \cdot)$ is the covariance matrix, i.e $k_{i,j}(\alpha) = e^{-\frac{\alpha}{2} ||x_i - x_j||^2}$.

https://medium.com/towards -artificial -intelligence

Deep Neural Networks

 $\mathbf{Y}_{j+1} = \mathbf{Y}_{j} + h f\big(\mathbf{Y}_{j}, \Theta_{j}\big) \xrightarrow[i=1, \cdots, N]{} \mathbf{Y}(t) = f\big(\mathbf{Y}(t), \Theta(t)\big)$

Left: ImageNET Database

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert *Reversible Architectures for Arbitrarily Deep ResNNs*. in review, arXiv, 2017.

A. Mahendran, A Vedaldi *Understanding deep image representations by inverting them*. CVPR, 2015.

Stability Requirement: Network is forward stable when it does not amplify perturbations of the input features due to, for example, noise or adversarial attacks.

✲ Current record is 88.61% by **EfficientNet-L2-475** (in review arxiv.org/pdf/2010.01412v2.pdf) Google Research on Sharpness Aware Minimization

Random Decision Forest

Random Decision Forest

 -1.5

 -1

 -0.5

0

 0.5

 1.5

 $\mathbf{1}$

 $\overline{2}$

Forest Mean/STD and Error

Bayesian Neural Networks

Unlike deterministic Neural Networks(left) that have a fixed value of their parameters, Bayesian Neural Networks(right) has a distributions linking nodes.

Stochastic Neural Network

How to account for uncertainty and control machine learning training.

Stochastic model equation $X_t = X_0 + \int_0^t F(X_s, \theta_s) ds + \int_0^t \sigma_s dW_s$ Control process Control terms $dX_t = F(X_t, \theta_t)dt + \sigma_t dW_t, \qquad 0 \le t \le T$ Cost function Measured data $J(u) := \mathbb{E}[\Phi(X_T, \Gamma)]$

Challenge: Adaptation, robustness, and speed*.*

Bayesian vs Stochastic Neural Networks

Archibald, Boa, Cao, & Zhang, 'Uncertainty QuantIfication in Deep Learning through Stochastic Maximum Principle', Submitted, 2020

Generative Pre-trained Transformer (GPT) - 4

From 'Attention Is All You Need' by Vaswani et al. doi.org/10.48550/arXiv.1706.03762

Experimental Science at DOE Facilities

Neutrons X-Rays

- Penetrate metals without absorbing
- Highly sensitive to water and hydrocarbons
- High contrast to light elements
- **•** Sensitivity to magnetism
- Measure dynamics and structure

$$
\mathbf{d} = F(S, R) = S_{\{\Phi\}}(\mathbf{Q}, \omega) * R(\mathbf{Q}, \omega)
$$

R. Pynn, 'Neutron Scattering', LANL

Small Angle Scattering (SAS)

Small Angle Electron Scattering

DOE Landscape Experimental Facility Landscape

Dynamical Low-Rank Approximation for Neural Networks

X OAK RIDGE

*Research and code from Steffen Schotthöfer at ORNL

Federated Learning + INTERSECT + Laboratory of the Future

Federated Learning + INTERSECT + Laboratory of the Future

Autonomous Chemistry **Autonomous Spectroscopy**

LOAK RIDGE
National Laboratory

WAK KIDUL
National Laboratory

ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)

ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)

Gaussian Process and Linear Spline Low Resolution

ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)

ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)

ML Grid Generation

ML Grid Generation

ML Grid Generation

ML Grid Generation

Functional Representation of Grids – Initialize

3

5

 -3

Ξ

-

 Ω

1

2

3

Initialize grid structure and

variables $\{c_l, c_r, c_t, c_b, c_m, \tilde{c}_s\},$ where $c = (c, N, \alpha)$ and $\tilde{c}_s =$

N, *a*). PDF is $f(x) = \frac{e^{ax}-1}{e^{a}x}$

 $\overline{}$

3

 C_I

 $e^{\alpha}-1$

 \mathcal{S}_{0}

 c_r

 0.4

 0.6

 c_m

 c_t

 $-\alpha = -5$
 $-\alpha = 2$

 0.2

0.35

 0.3 0.25

 0.15 0.1

determine ranges for

Functional Representation of Grids – \tilde{c}_s

Functional Representation of Grids

Thanks! Questions???

Acknowledgments

DOE Funding from ASCR & BES ORNL Funding from LDRD

