

Introduction to Big and Deep Data Analysis Methods

Rick Archibald Oak Ridge National Laboratory USA

ITER International School Dec 9-13, 2024 Nagoya, Japan

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

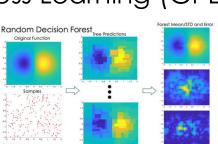
Outline

- Machine Learning Basics
- SAS Federated Learning
- FREDA Machine Learning Grid Generation

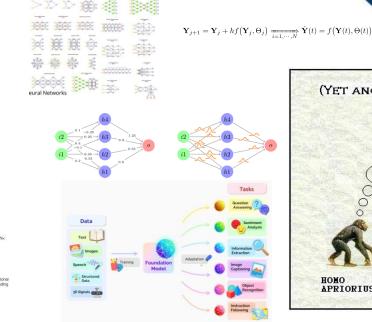
Machine Learning Basics

Quick Overview of Machine Learning

- K-Nearest Neighbors Algorithm (KNN)
- Support Vector Machines (SVM)
- Gaussian Process Learning (GPL)
- Decision Tree



- Deep Neural Networks (DNN)
- Bayesian Neural Netwo



 $\mathbf{K}(S_{z,\bar{N}}, S_{z,\bar{N}}) - \mathbf{K}(S_{z,\bar{N}}, S_{z,\bar{N}}) \left[\mathbf{K}(S_{z,N}, S_{z,N}) + \sigma^{2}\mathbf{I}\right]^{-1} \mathbf{K}(S_{z,N}, S_{z,\bar{N}})$

ARTIFICIAL INTELLIGENCE

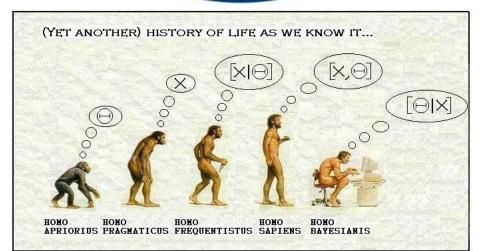
A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

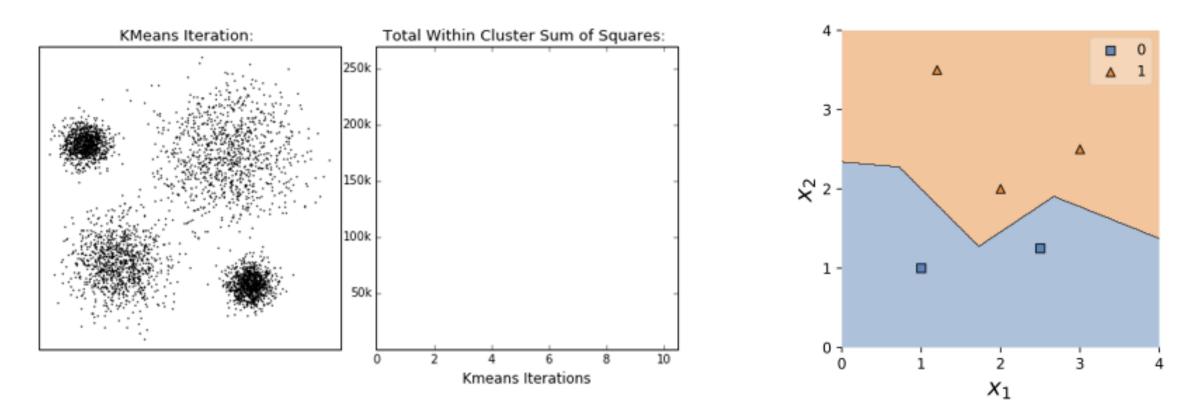
DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data



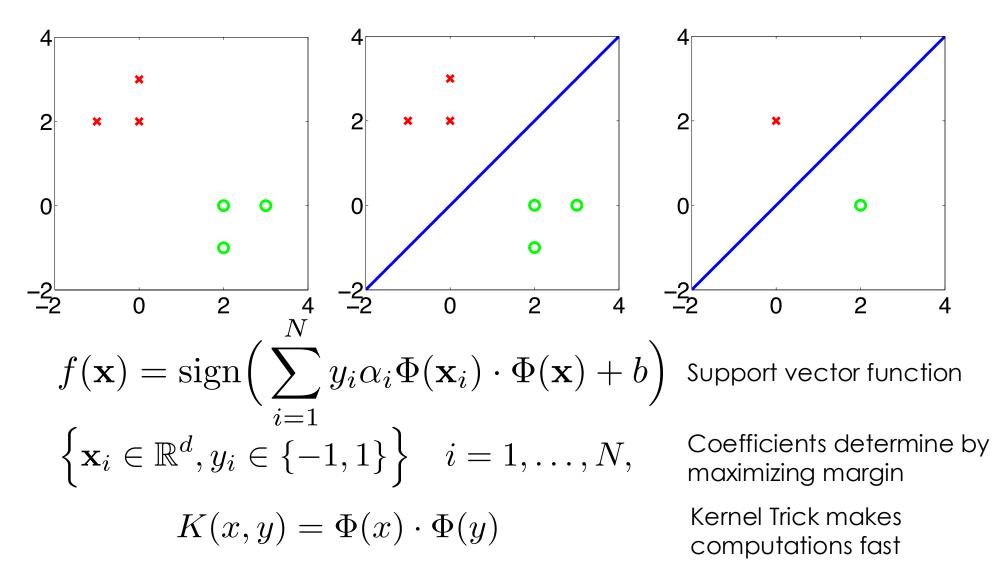
 $K(\mathbf{x}, \mathbf{y}) = e^{-\gamma \|\mathbf{x} \cdot \mathbf{y}\|^2}$

K-Nearest Neighbors Algorithm

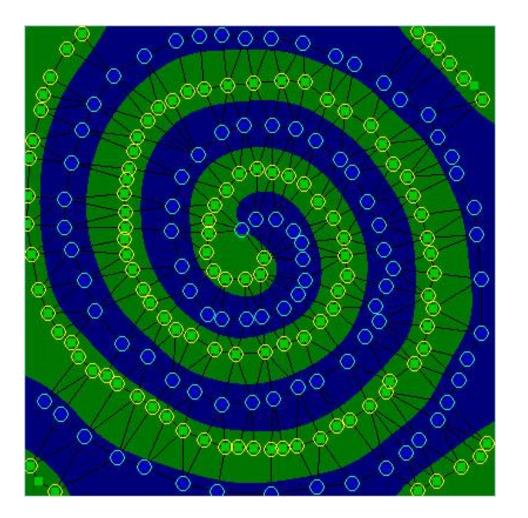


- Minimal or No training!
- More data greater accuracy
- Prediction and storage is computational challenge

Support Vector Machines



Support Vector Machines



Gaussian Kernel capable of classifying complicated domains

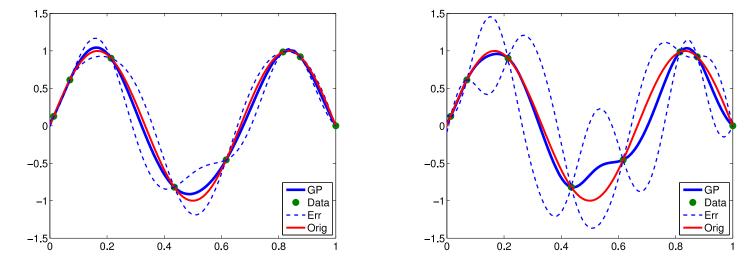
$$K(\mathbf{x}, \mathbf{y}) = e^{-\gamma \|\mathbf{x} \cdot \mathbf{y}\|^2}$$

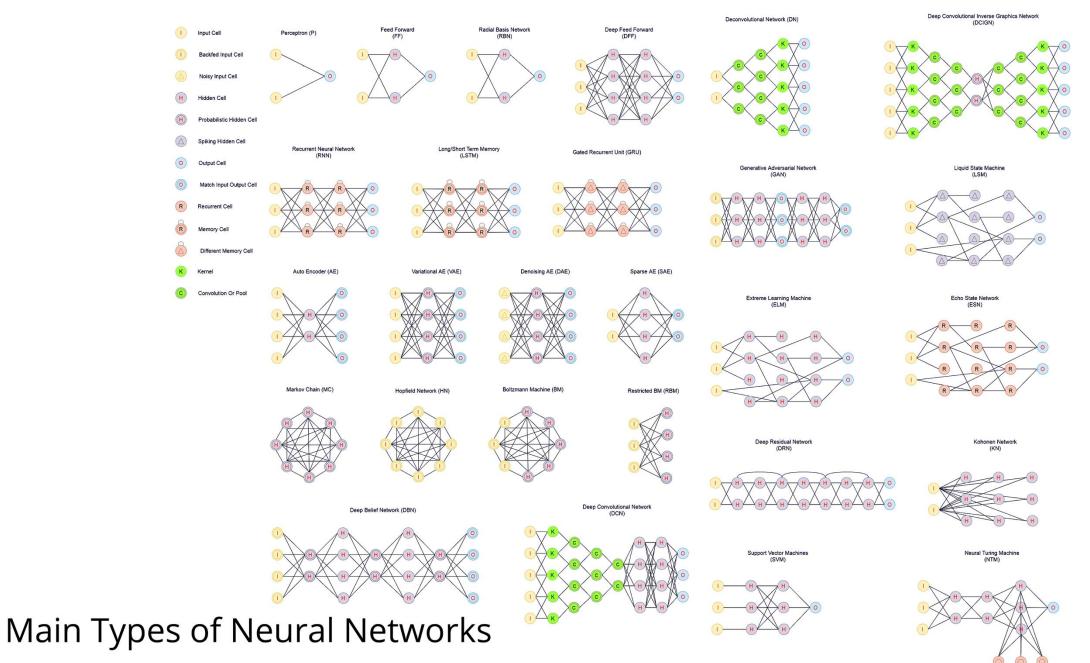
Gaussian Process Learning

Given the sets $\mathcal{S}_{x,N} := \{x_1, \ldots, x_N\}, \mathcal{S}_{f,N} := \{f(x_1), \ldots, f(x_N)\}, \text{ and } \mathcal{S}_{\tilde{x},\tilde{N}} := \{\tilde{x}_1, \ldots, \tilde{x}_{\tilde{N}}\}$

$$F(\mathcal{S}_{\tilde{x},\tilde{N}})|\mathcal{S}_{x,N},\mathbf{f}_{\mathcal{S}_{x,N}} \sim \mathcal{N}\left(\mathbf{K}\left(\mathcal{S}_{\tilde{x},\tilde{N}},\mathcal{S}_{x,N}\right)\left[\mathbf{K}\left(\mathcal{S}_{x,N},\mathcal{S}_{x,N}\right)+\sigma^{2}\mathbf{I}\right]^{-1}\mathbf{f}_{\mathcal{S}_{x,N}}, \mathbf{K}\left(\mathcal{S}_{\tilde{x},\tilde{N}},\mathcal{S}_{\tilde{x},\tilde{N}}\right)-\mathbf{K}\left(\mathcal{S}_{\tilde{x},\tilde{N}},\mathcal{S}_{x,N}\right)\left[\mathbf{K}\left(\mathcal{S}_{x,N},\mathcal{S}_{x,N}\right)+\sigma^{2}\mathbf{I}\right]^{-1}\mathbf{K}\left(\mathcal{S}_{x,N},\mathcal{S}_{\tilde{x},\tilde{N}}\right)\right).$$

where $K(\cdot, \cdot)$ is the covariance matrix, i.e $k_{i,j}(\alpha) = e^{-\frac{\alpha}{2} ||x_i - x_j||^2}$.





https://medium.com/towards-artificial-intelligence

Deep Neural Networks

 $\mathbf{Y}_{j+1} = \mathbf{Y}_j + hf(\mathbf{Y}_j, \Theta_j) \xrightarrow[i=1,\dots,N]{} \dot{\mathbf{Y}}(t) = f(\mathbf{Y}(t), \Theta(t))$

Left: ImageNET Database

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert Reversible Architectures for Arbitrarily Deep ResNNs. in review, arXiv, 2017.

A. Mahendran, A Vedaldi Understanding deep image representations by inverting them. CVPR, 2015.

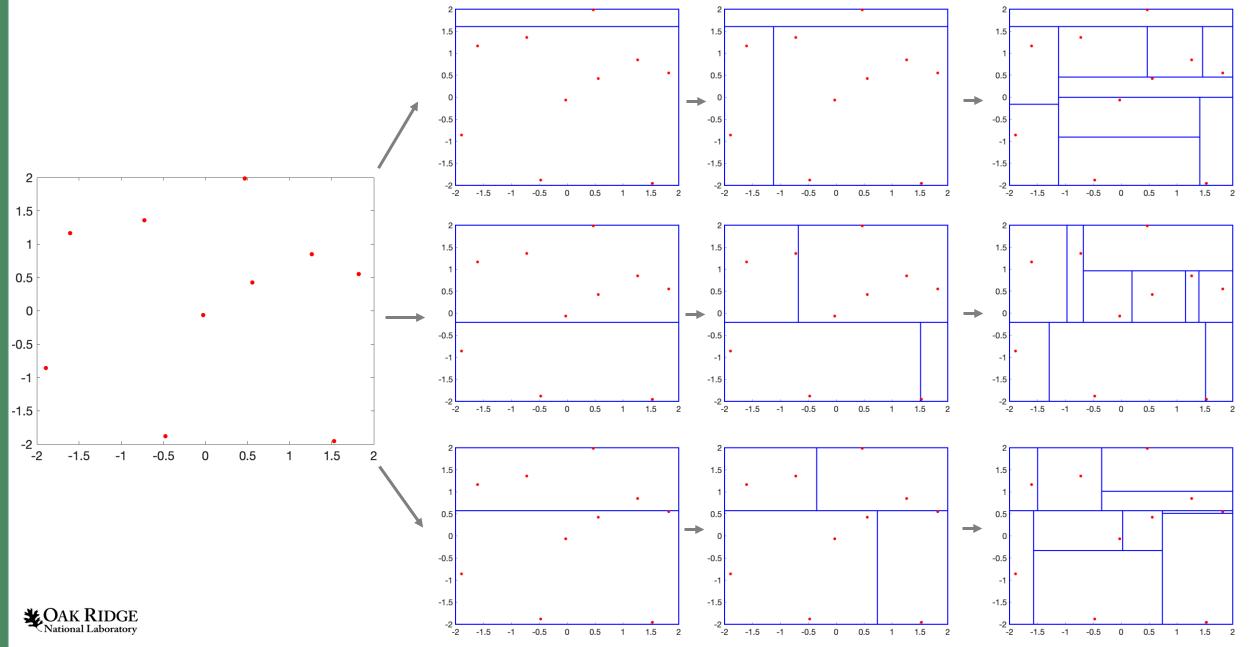
	Google	Intel	Chinese UHK	Nvidia	Facebook	Xtract *
_	2013	2014	2015	2015	2016	2017
	70.2%	72.8%	73.15%	74.10%	74.33%	85.5%

Stability Requirement: Network is forward stable when it does not amplify perturbations of the input features due to, for example, noise or adversarial attacks.

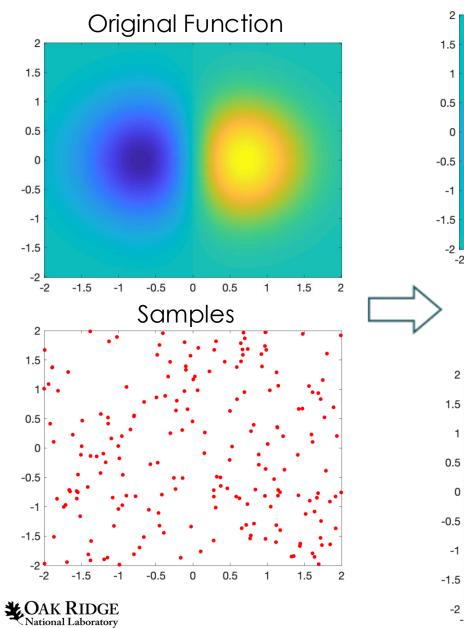
CAK RIDGE

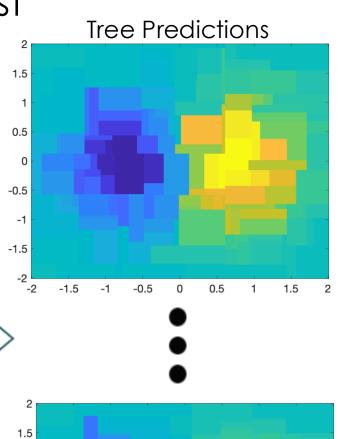
* Current record is 88.61% by **EfficientNet-L2-475** (in review arxiv.org/pdf/2010.01412v2.pdf) Google Research on Sharpness Aware Minimization

Random Decision Forest



Random Decision Forest





0.5

0

-0.5

-1

-2

-2

-1.5

-1

-0.5

0

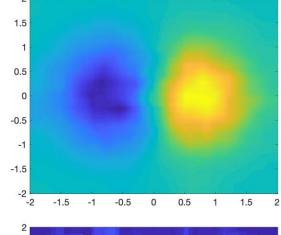
0.5

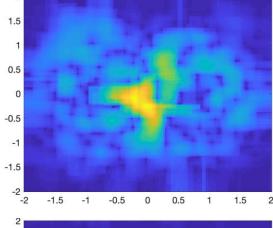
1.5

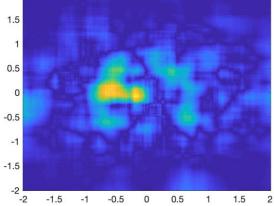
1

2

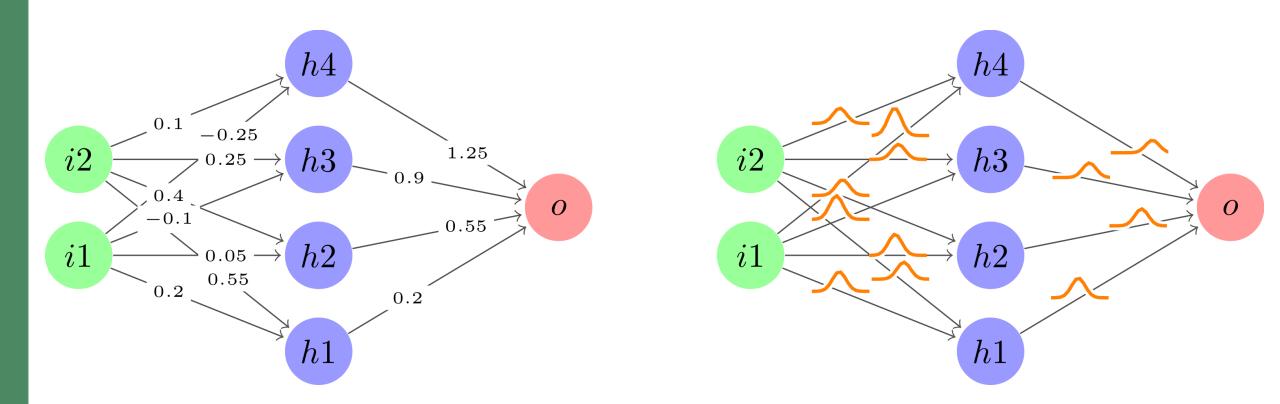
Forest Mean/STD and Error







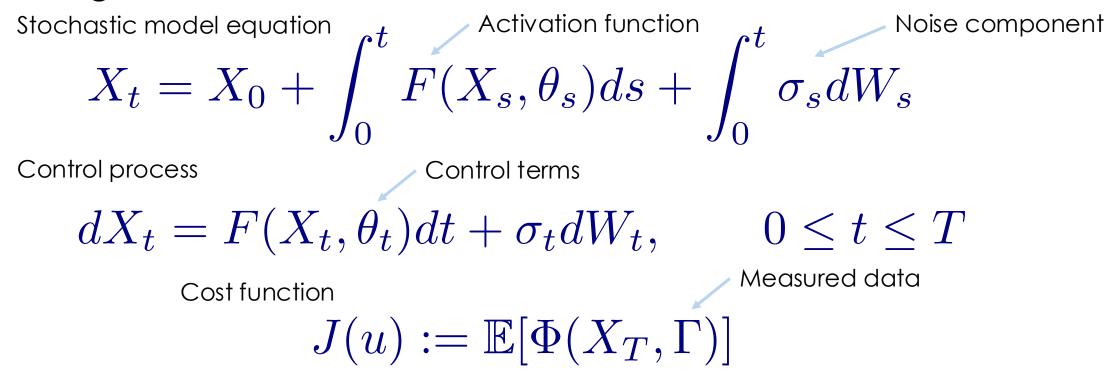
Bayesian Neural Networks



Unlike deterministic Neural Networks(left) that have a fixed value of their parameters, Bayesian Neural Networks(right) has a distributions linking nodes.

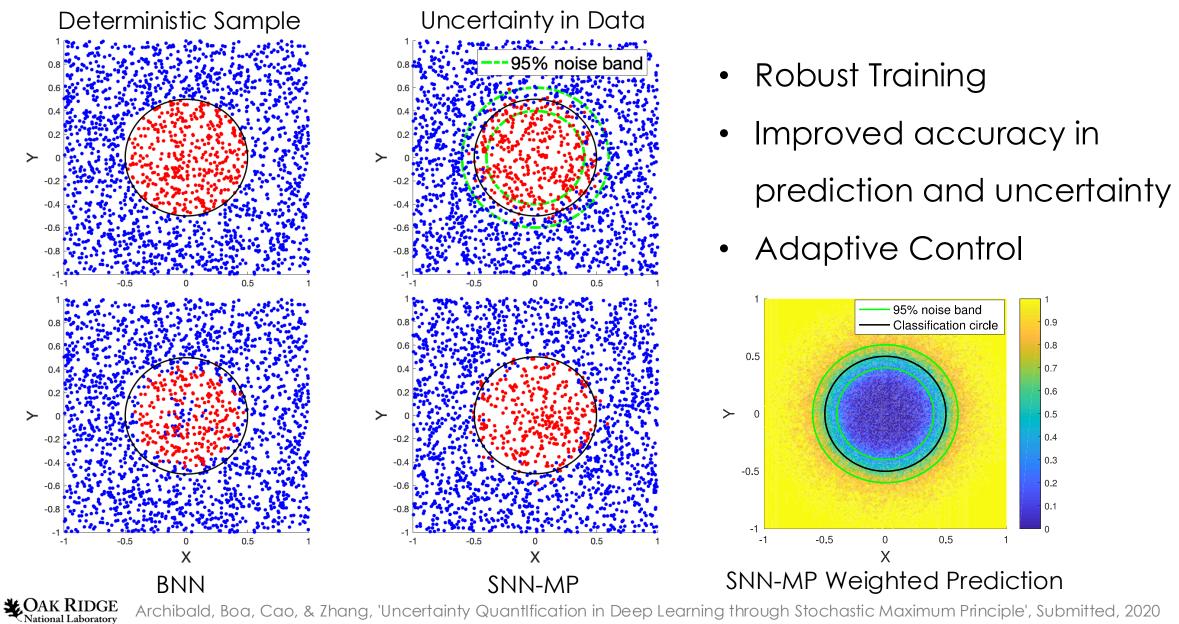
Stochastic Neural Network

How to account for uncertainty and control machine learning training.



Challenge: Adaptation, robustness, and speed.

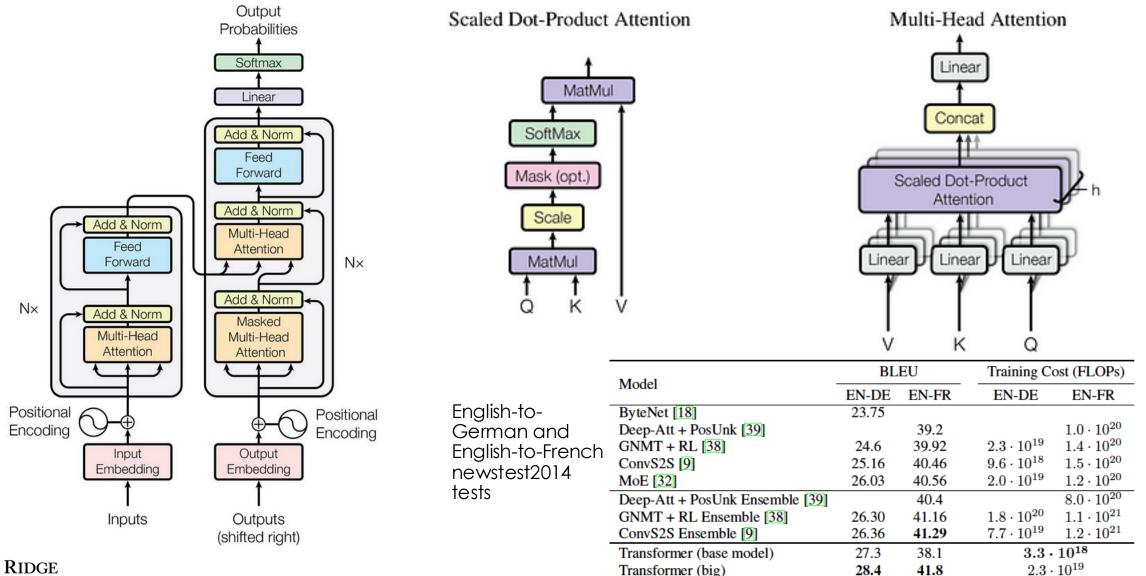
Bayesian vs Stochastic Neural Networks



Archibald, Boa, Cao, & Zhang, 'Uncertainty QuantIfication in Deep Learning through Stochastic Maximum Principle', Submitted, 2020

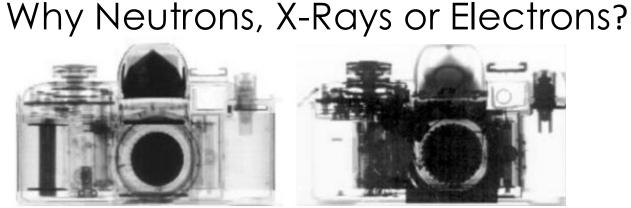
Generative Pre-trained Transformer (GPT) - 4

From 'Attention Is All You Need' by Vaswani et al. doi.org/10.48550/arXiv.1706.03762

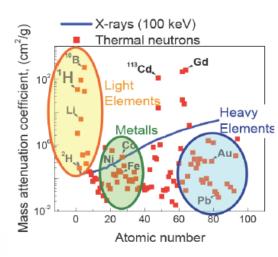


CAK RIDGE National Laboratory

Experimental Science at DOE Facilities

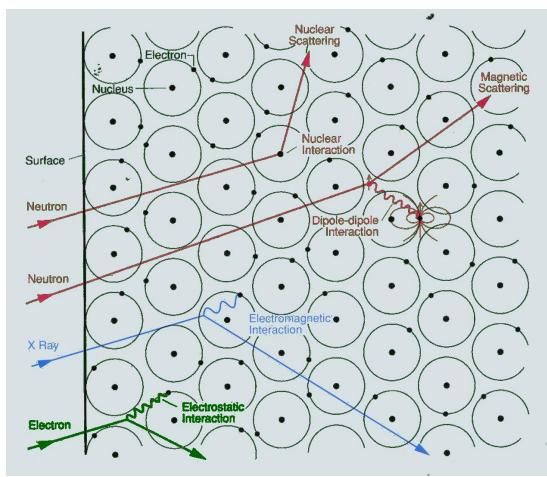


Neutrons



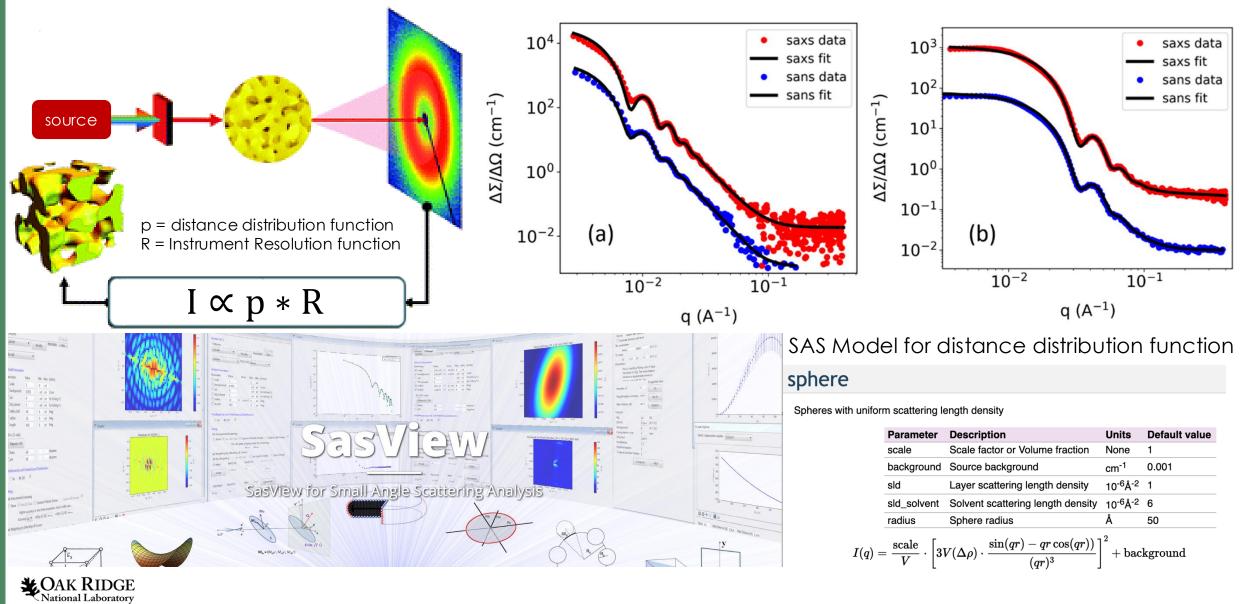
- Penetrate metals without absorbing
- Highly sensitive to water and hydrocarbons
- High contrast to light elements
 - Sensitivity to magnetism
- Measure dynamics and structure

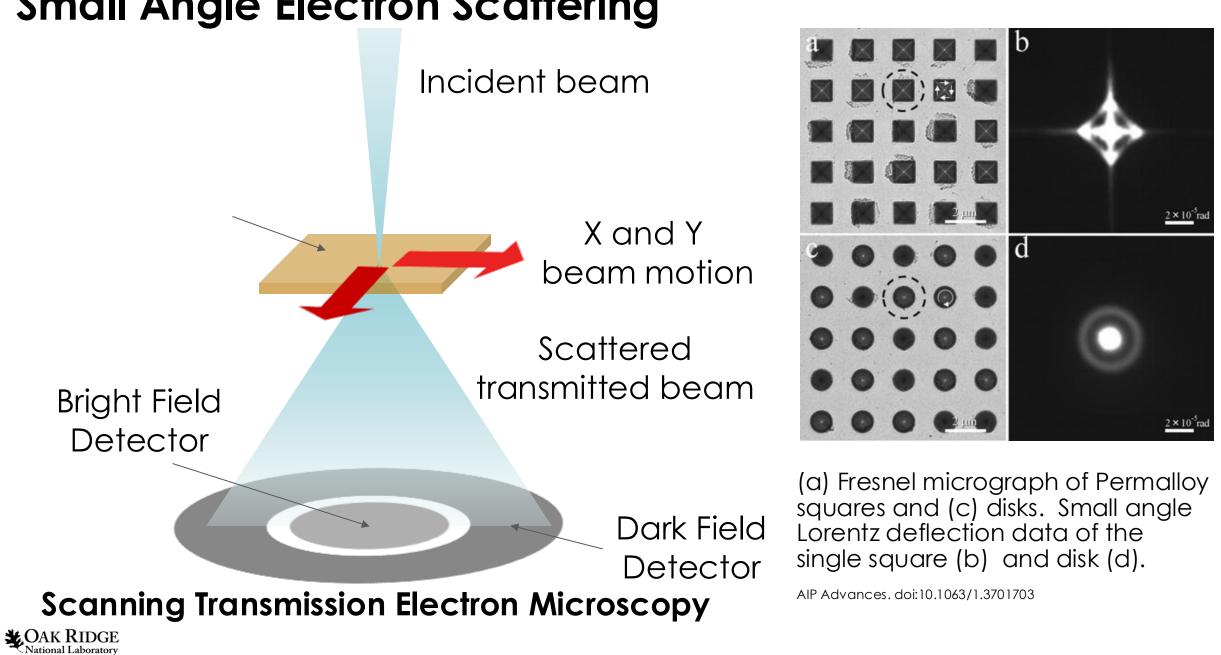
$$\mathbf{d} = F(S, R) = S_{\{\Phi\}}(\mathbf{Q}, \omega) * R(\mathbf{Q}, \omega)$$



R. Pynn, 'Neutron Scattering', LANL

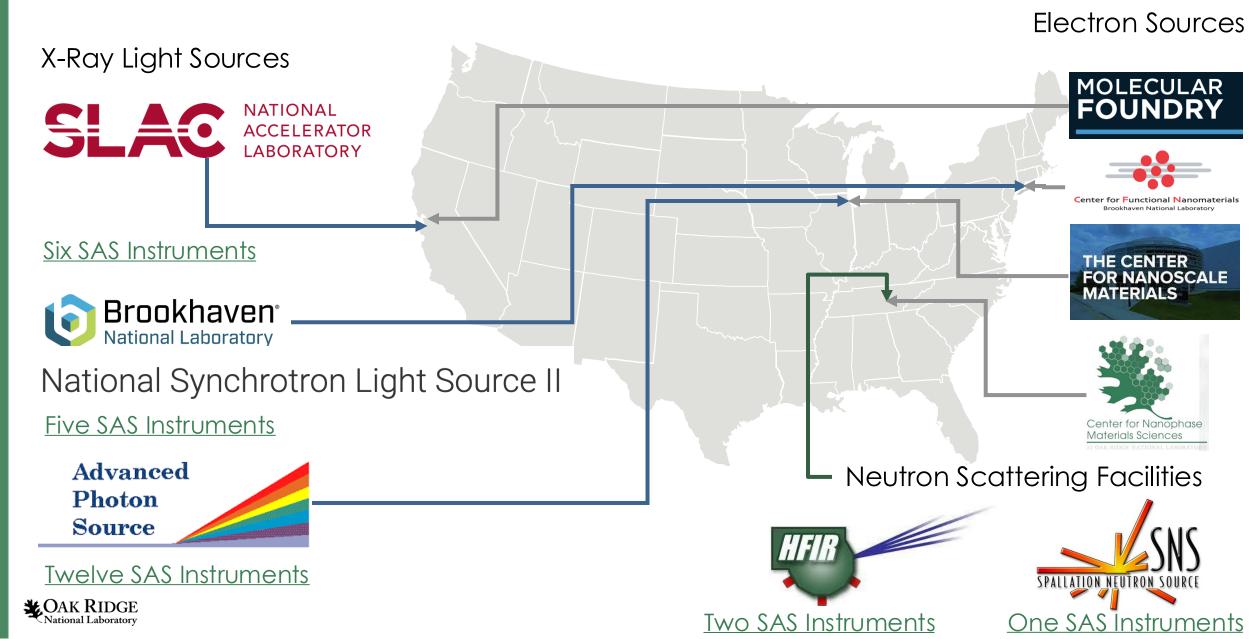
Small Angle Scattering (SAS)

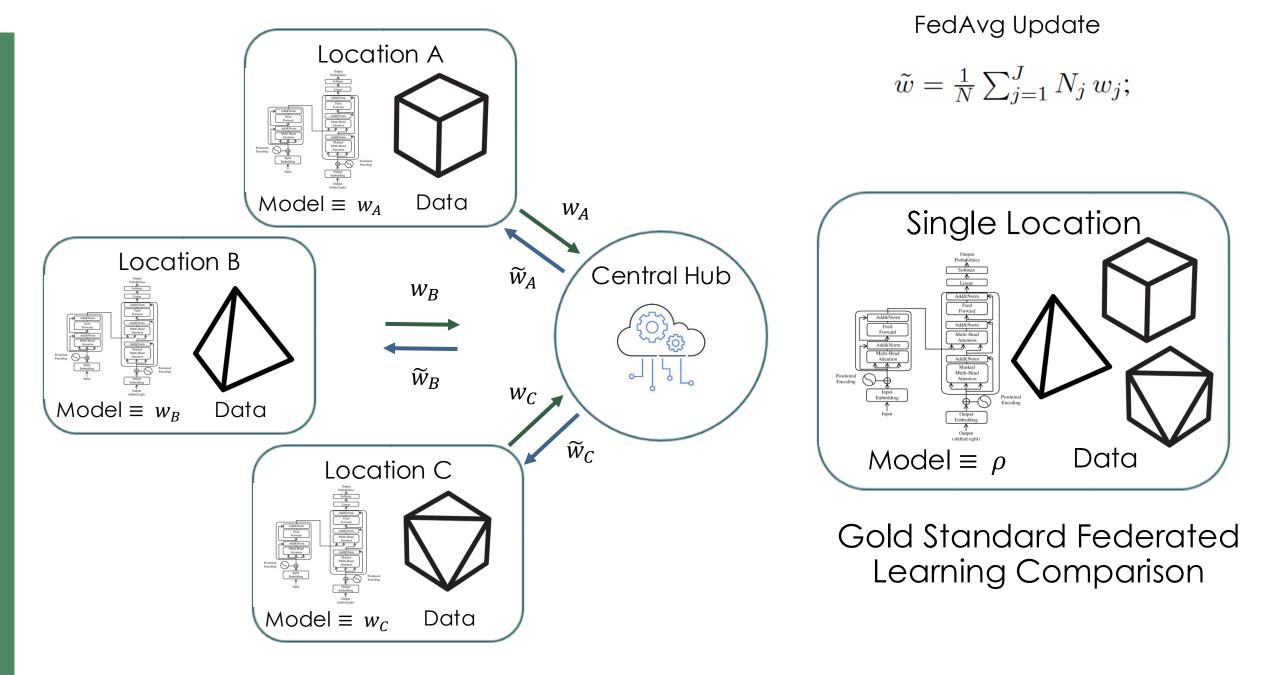


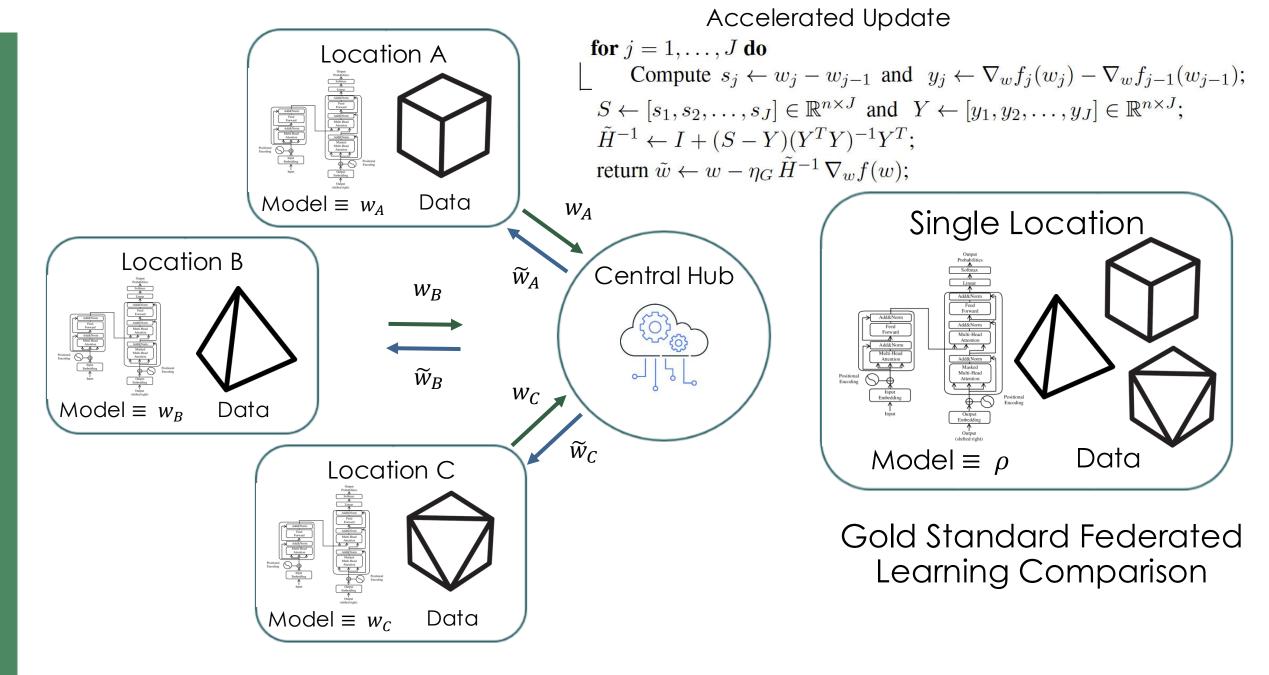


Small Angle Electron Scattering

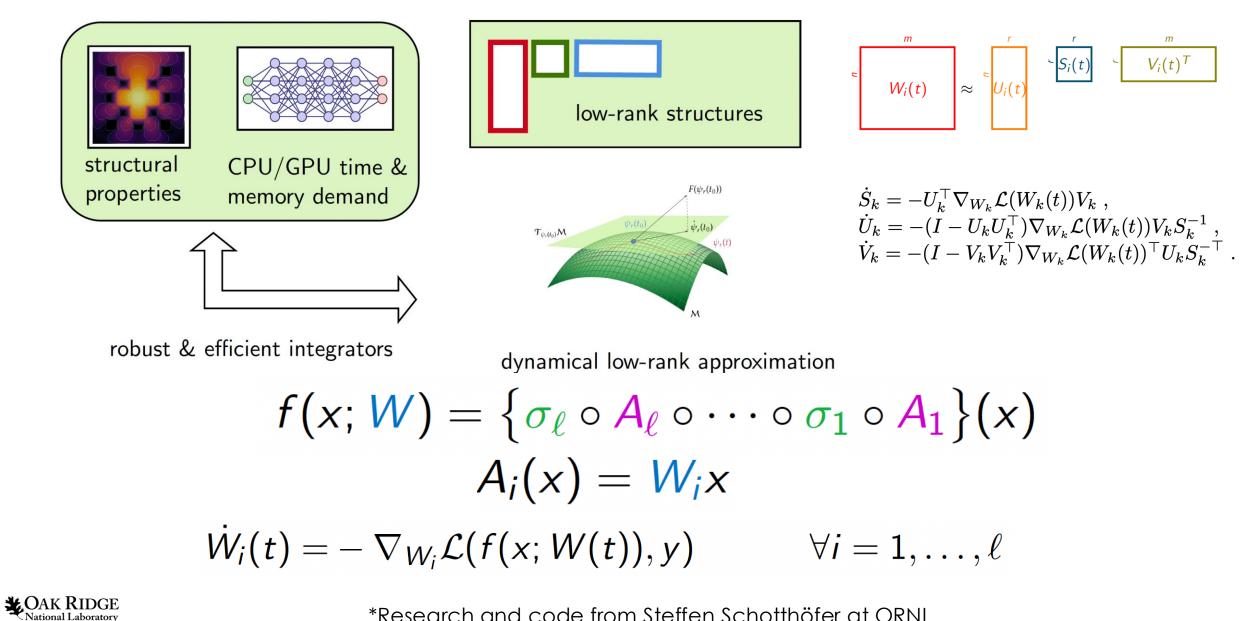
DOE Landscape Experimental Facility Landscape





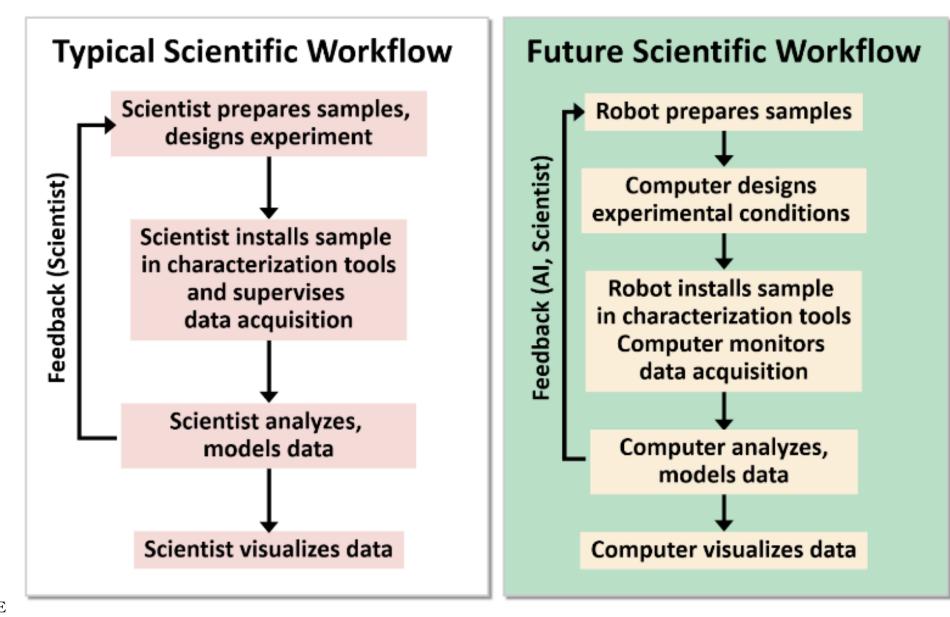


Dynamical Low-Rank Approximation for Neural Networks



*Research and code from Steffen Schotthöfer at ORNL

Federated Learning + INTERSECT + Laboratory of the Future



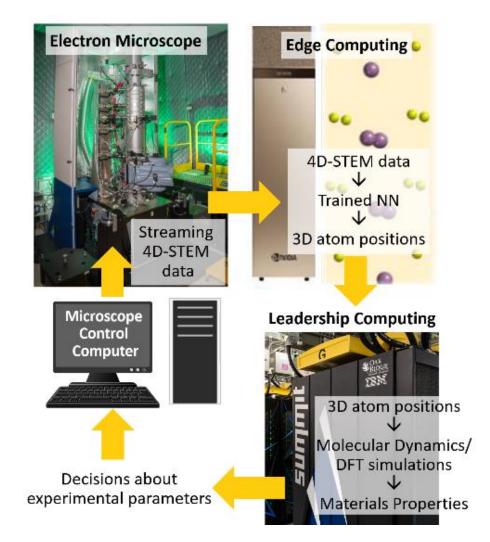
Federated Learning + INTERSECT + Laboratory of the Future

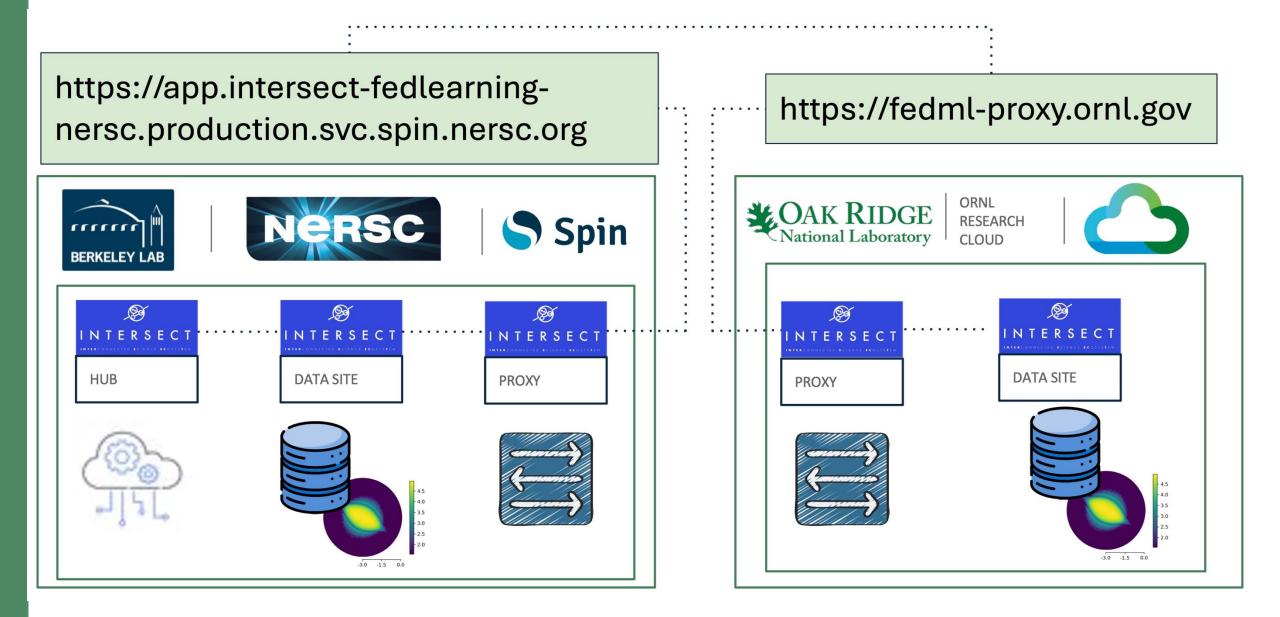
ANALYTICA TOOLS REACTANT 1 REACTOR T, p, rate, etc. PRODUCT REACTANT Mobile Robot XRD Mixing/ Milling Stationary Robot HPLC Synthesis GC Mass Spec Furnace **Inert Atmosphere Enclosure** 1m

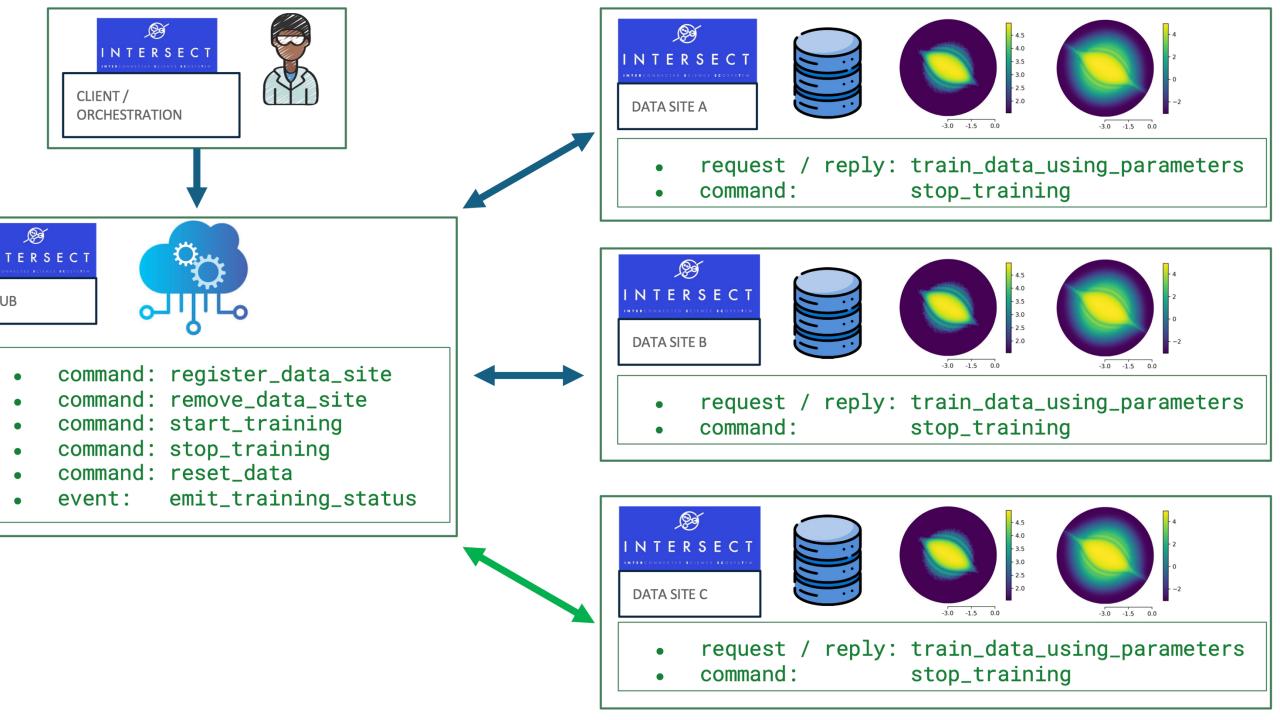
CAK RIDGE National Laboratory

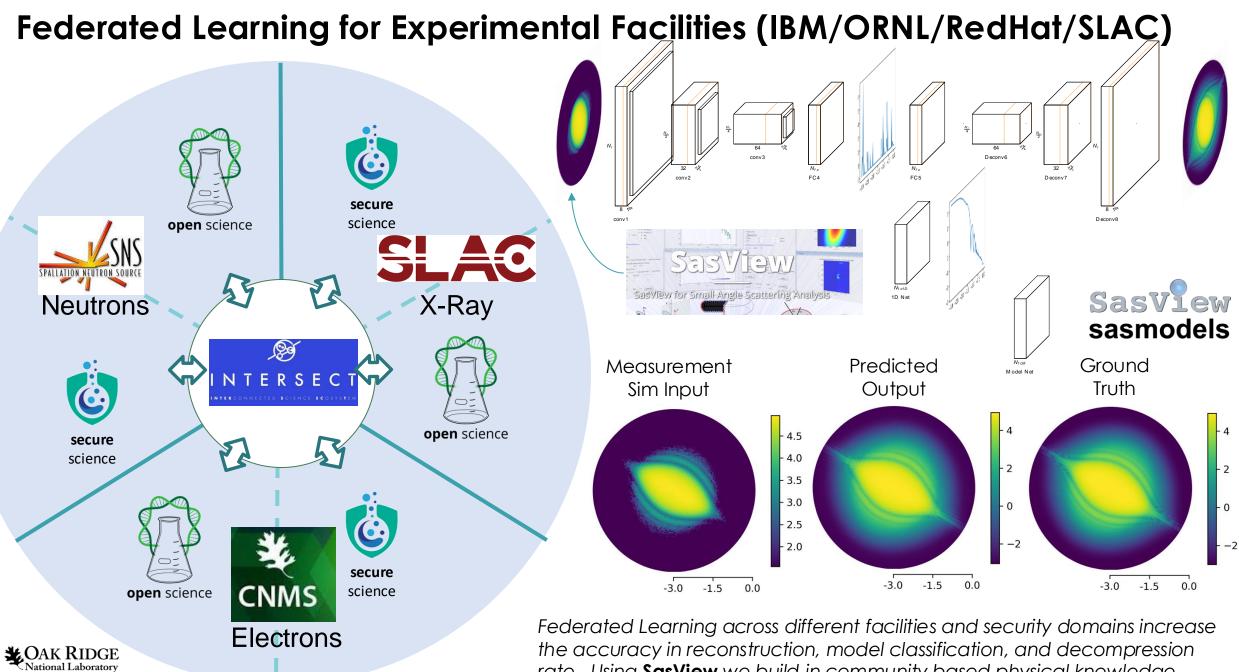
Autonomous Chemistry

Autonomous Spectroscopy

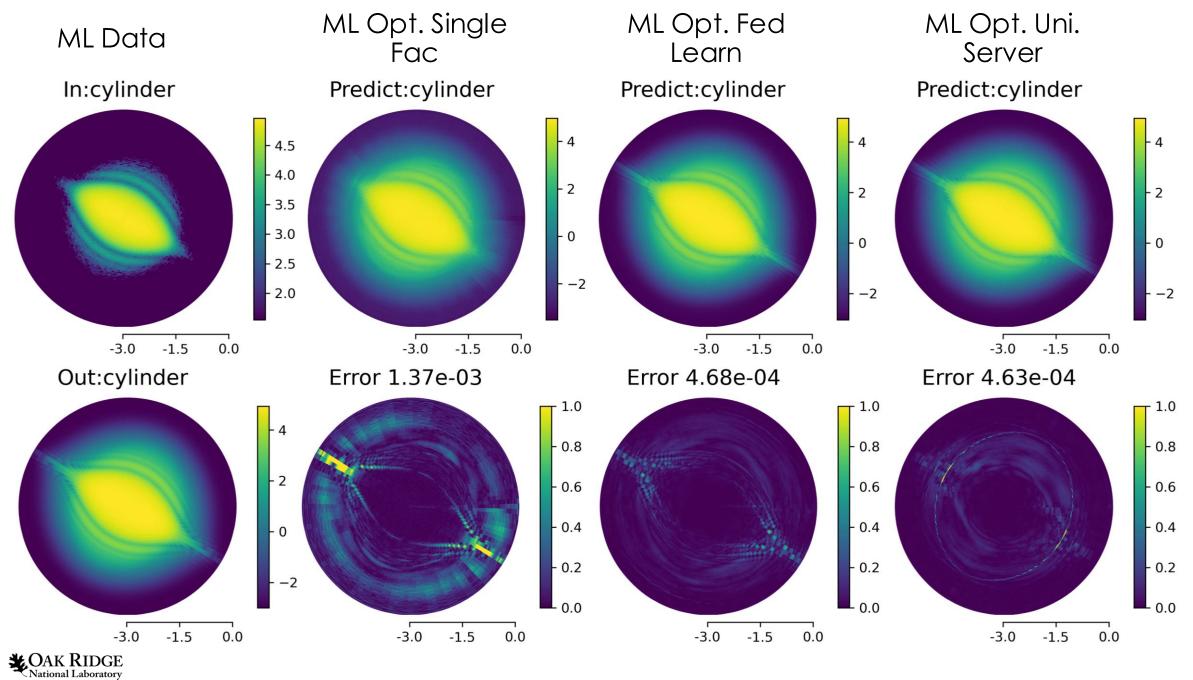


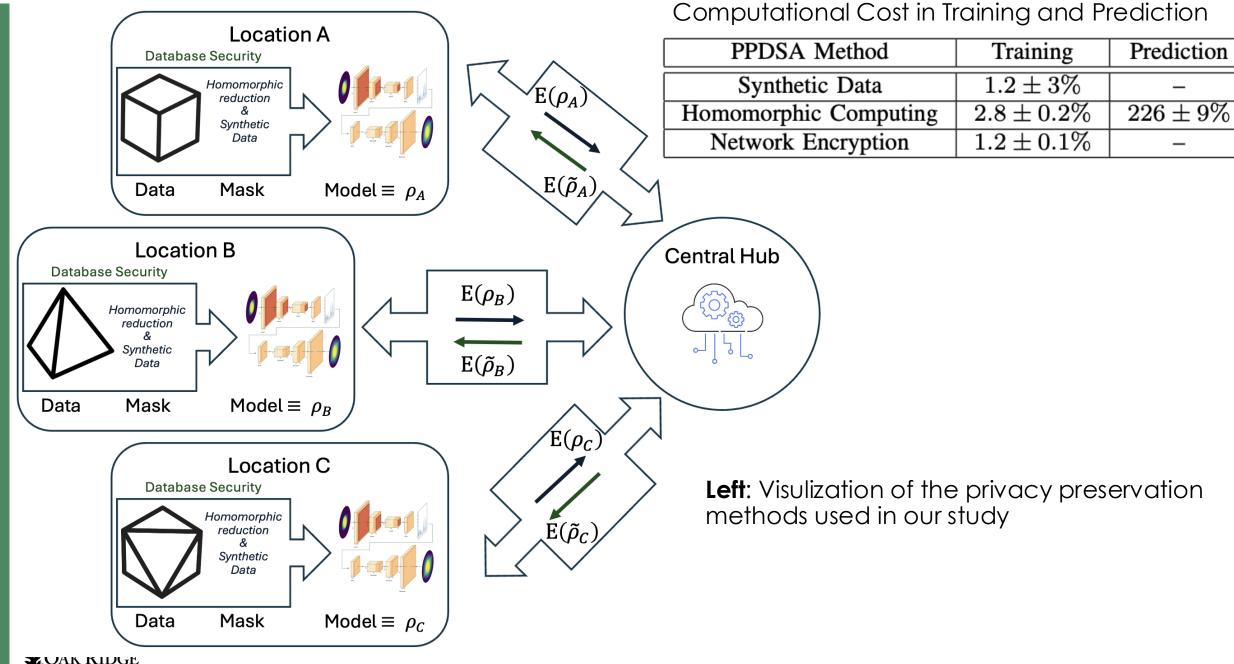




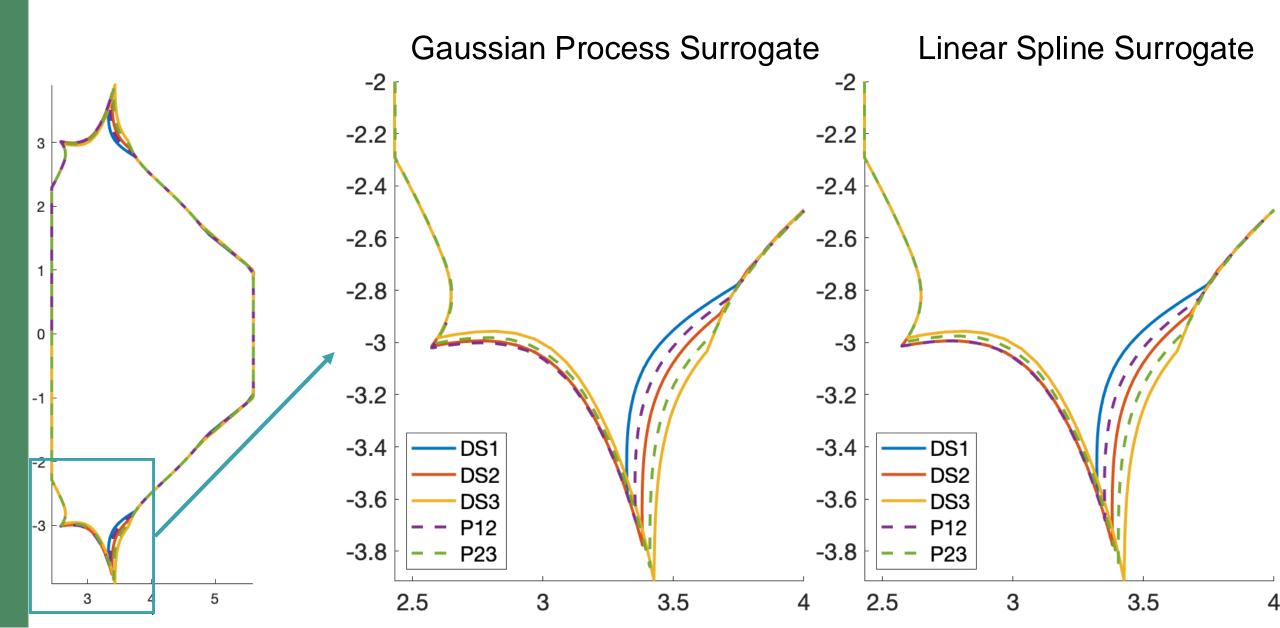


rate. Using **SasView** we build-in community based physical knowledge.

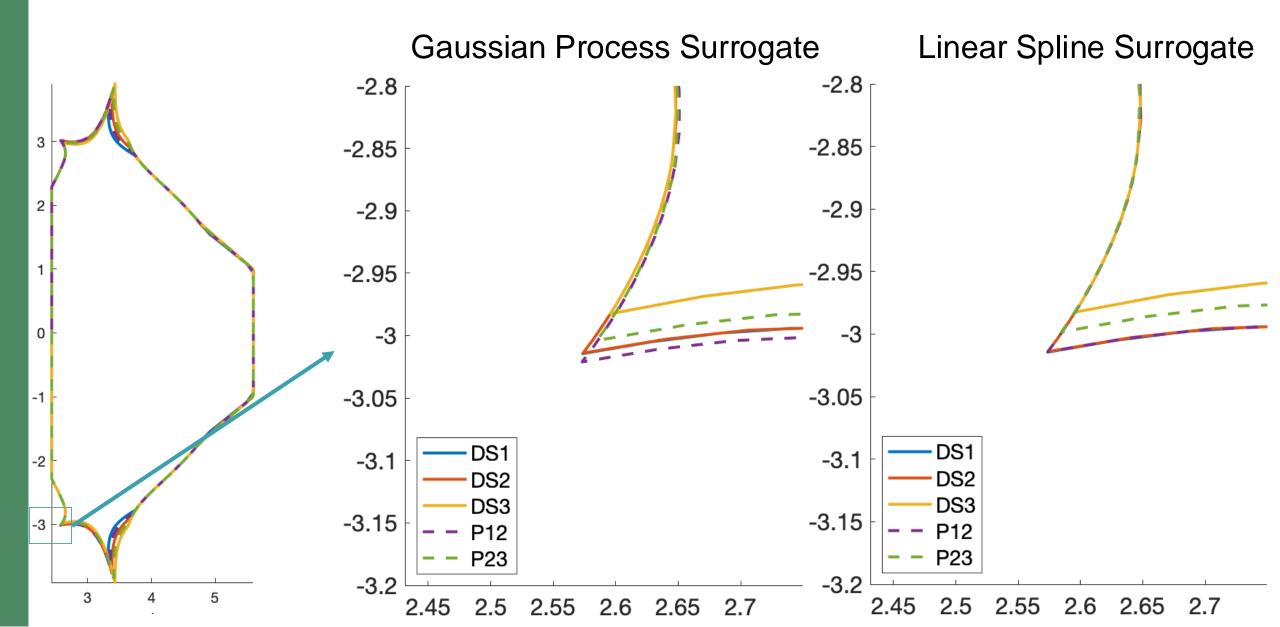




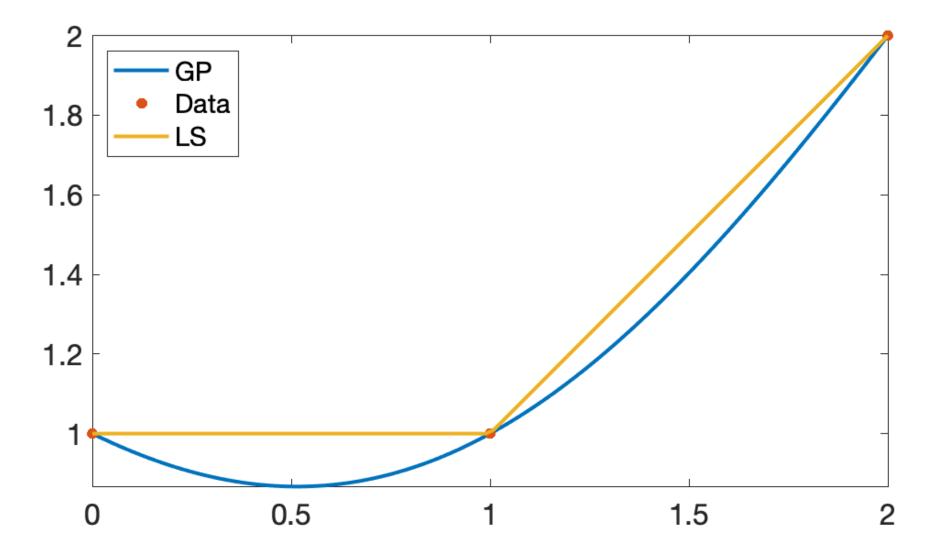
WOAK KIDGE National Laboratory ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)



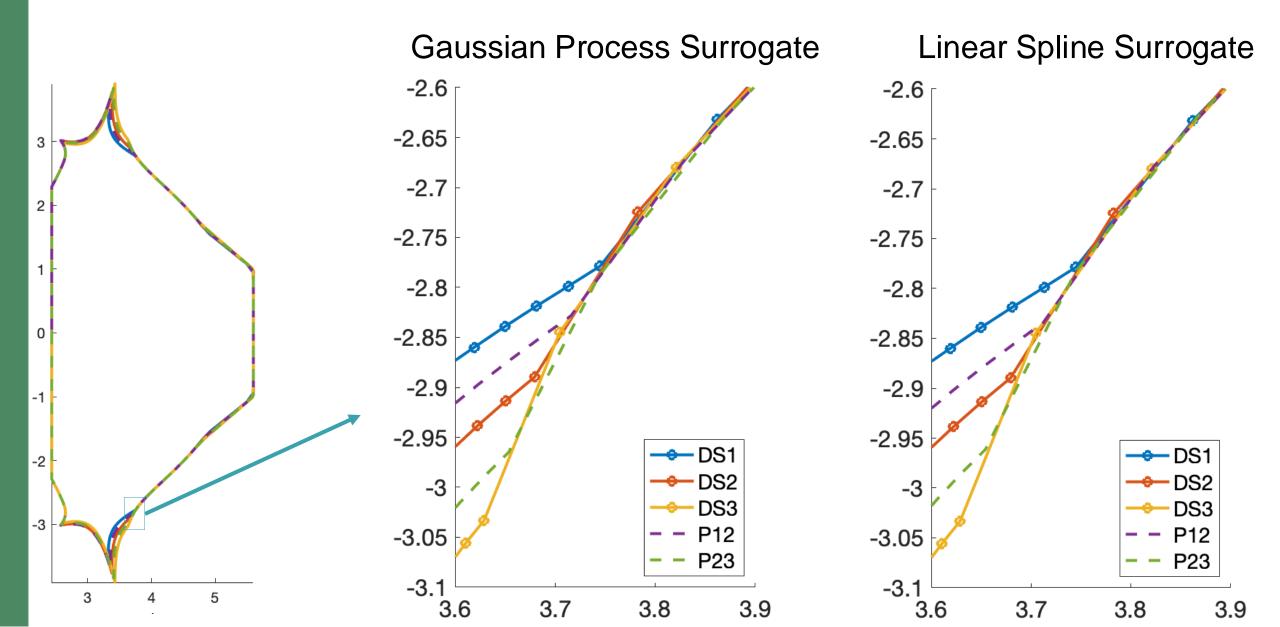
ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)



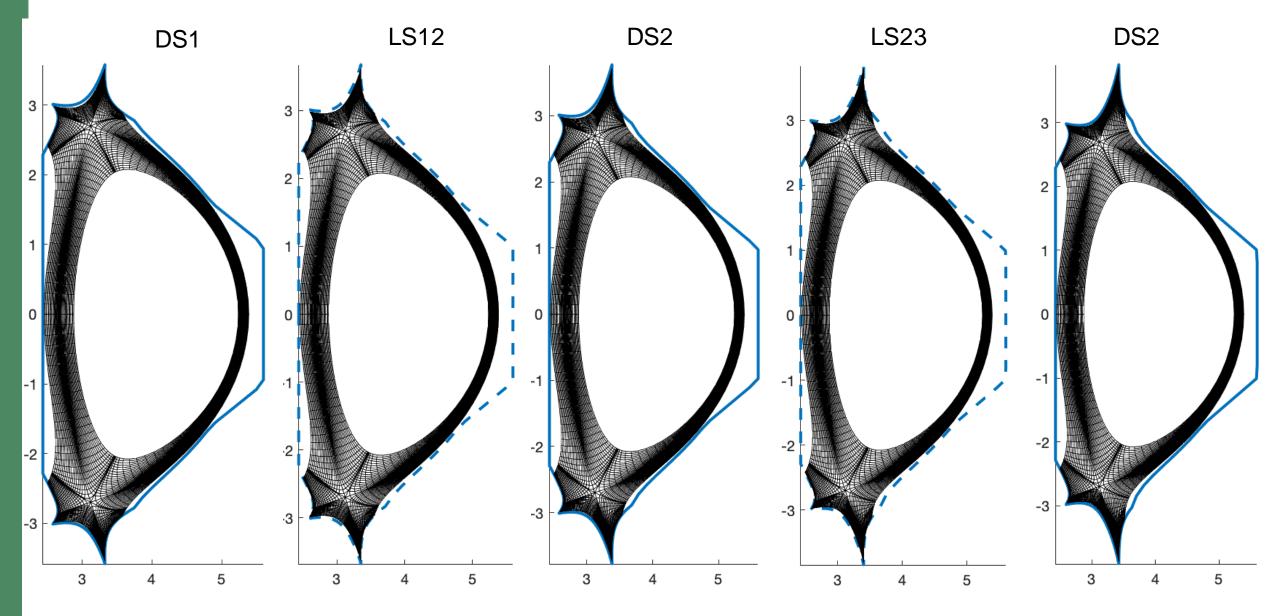
Gaussian Process and Linear Spline Low Resolution



ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)

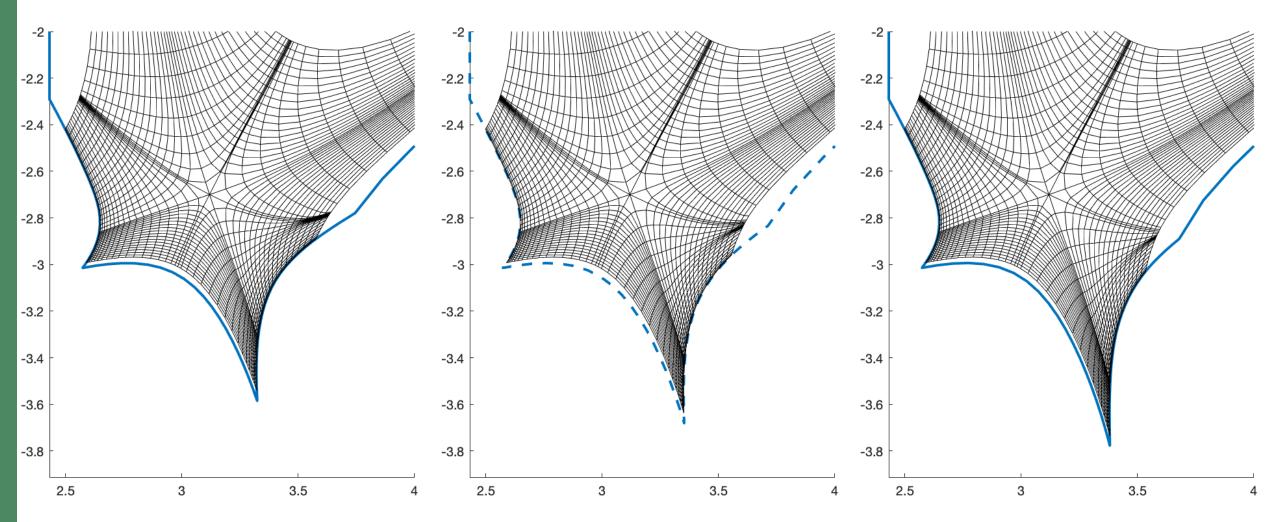


ML Grid Generation Fusion REactor Design and Assessment (FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)



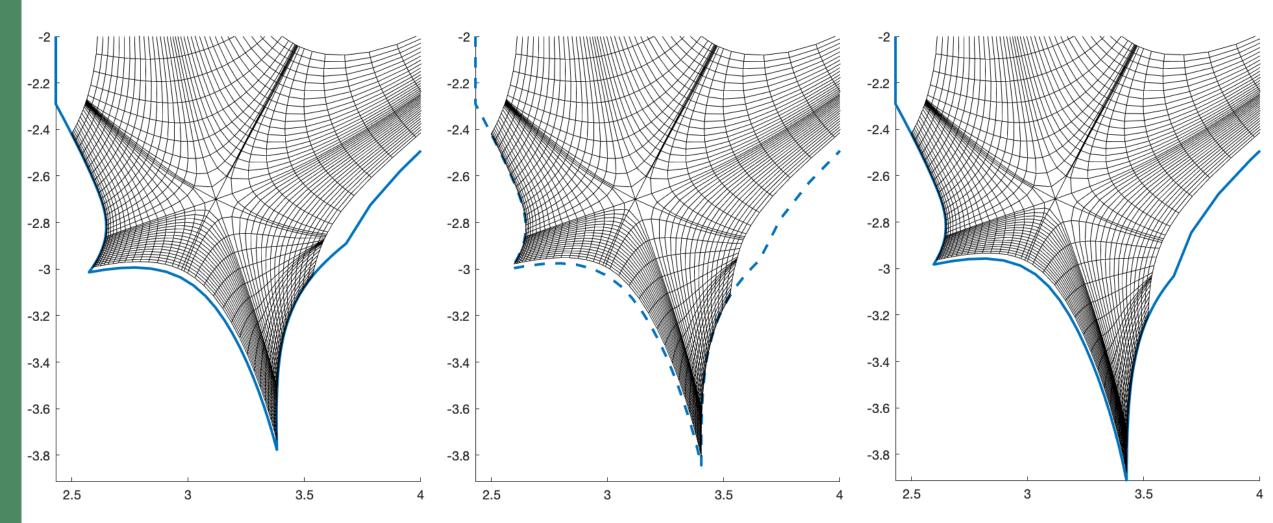
ML Grid Generation

DS1

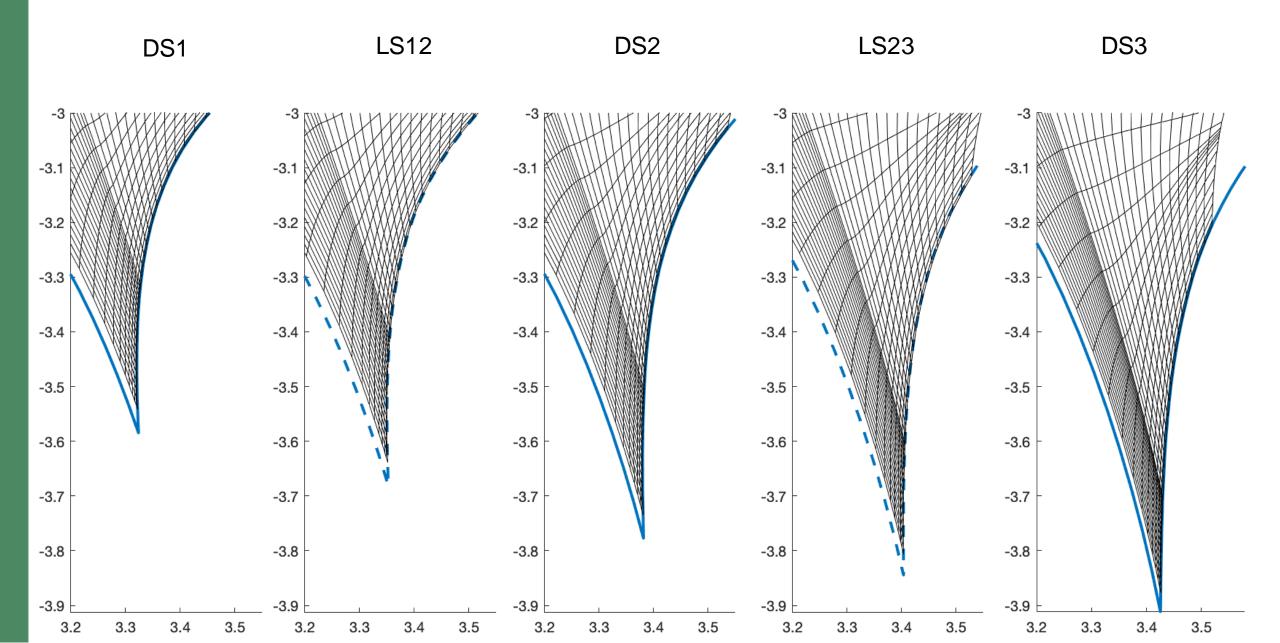


ML Grid Generation

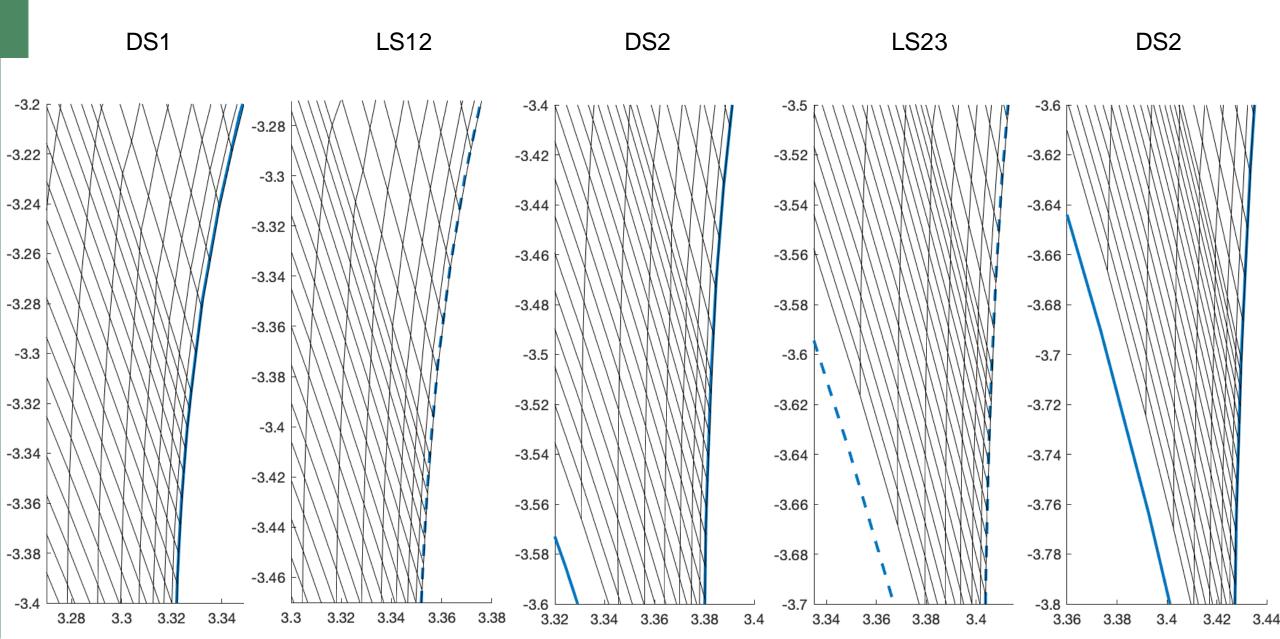
DS2



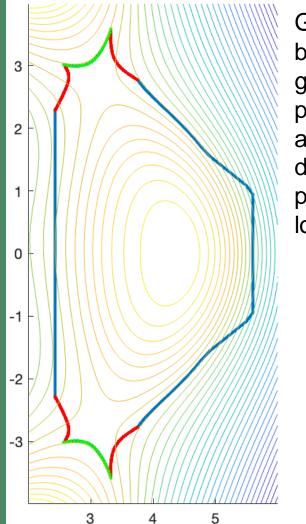
ML Grid Generation



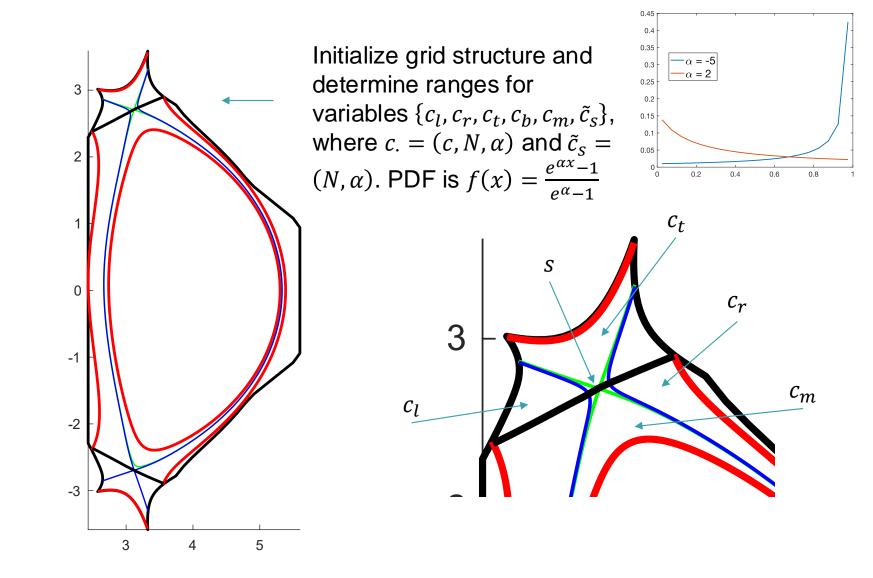
ML Grid Generation



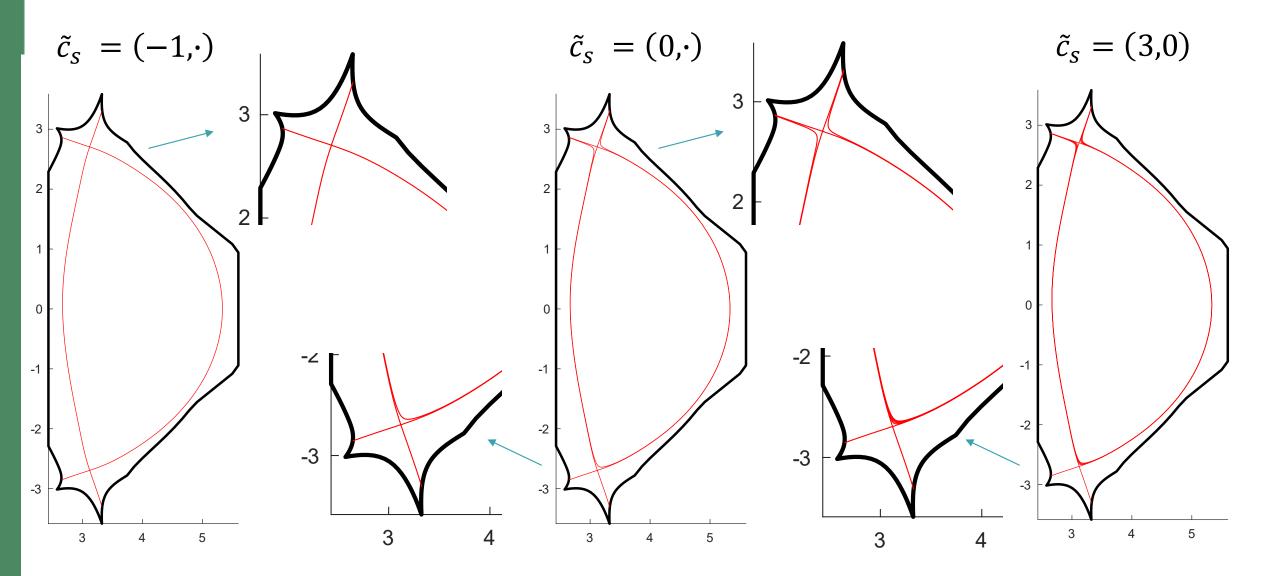
Functional Representation of Grids – Initialize



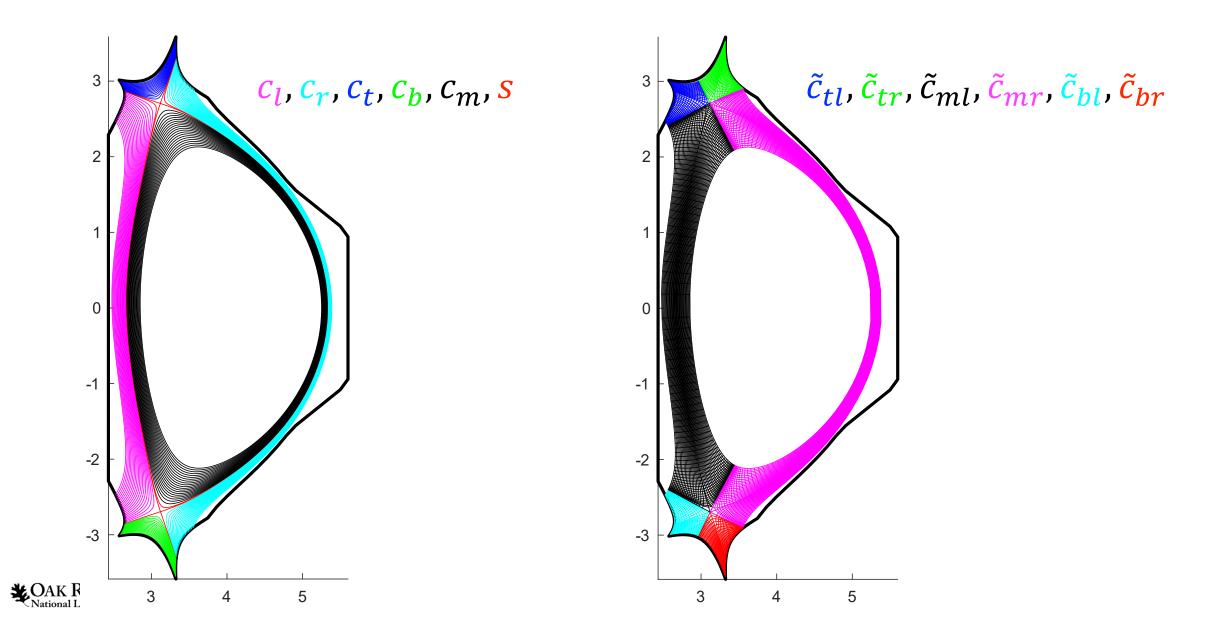
Given boundary geometry, psi field, and diverter plate locations



Functional Representation of Grids – \tilde{c}_s



Functional Representation of Grids



Thanks! Questions???

Acknowledgments

DOE Funding from ASCR & BES ORNL Funding from LDRD

