
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Introduction to Big and Deep Data Analysis Methods

Rick Archibald

Oak Ridge National Laboratory

USA

ITER International School Dec 9-13, 2024

Nagoya, Japan



2

Outline

• Machine Learning Basics

• SAS Federated Learning

• FREDA Machine Learning Grid Generation
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Machine Learning Basics
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• K-Nearest Neighbors Algorithm (KNN)

• Support Vector Machines (SVM)

• Gaussian Process Learning (GPL)

• Decision Tree

• Deep Neural Networks (DNN)

• Bayesian Neural Networks (BNN)

• Foundational Models
4

Quick Overview of Machine LearningSebast ian Raschka STAT479 FS18. L01: Int ro to Machine Learning Page 5

F igur e 3: I llust rat ion of the nearest neighbor decision boundary as the union of the polyhedra of

t raining examples belonging to the same class.

2.4 k -N earest N eighbor Classificat ion and Regression

Previously, we described the NN algorithm, which makes a predict ion by assigning the class

label or cont inuous target value of the most similar t raining example to the query point

(where similarity is typically measured using the Euclidean distance metric for cont inuous

features).

Instead of basing the predict ion of the single, most similar t raining example, kNN considers

the k nearest neighbors when predict ing a class label (in classificat ion) or a cont inuous target

value (in regression).

2.4.1 Classificat ion

In the classificat ion set t ing, the simplest incarnat ion of the kNN model is to predict the

target class label as the class label that is most often represented among the k most similar

t raining examples for a given query point . In other words, the class label can be considered

as the “mode” of the k t raining labels or the outcome of a “ plurality vot ing.” Note that in

literature, kNN classificat ion is often described as a “majority vot ing.” While the authors

usually mean the right thing, the term “majority vot ing” is a bit unfortunate as it typically

refers to a reference value of > 50% for making a decision. In the case of binary predict ions

(classificat ion problems with two classes), there is always a majority or a t ie. Hence, a

majority vote is also automat ically a plurality vote. However, in mult i-class set t ings, we do

not require a majority to make a predict ion via kNN. For example, in a three-class set t ing

a frequency > 1
3

( approx 33.3%) could already enough to assign a class label.



5

K-Nearest Neighbors Algorithm

• Minimal or No training!
• More data greater accuracy

• Prediction and storage is computational challenge
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Support Vector Machines

Support vector function

Coefficients determine by 

maximizing margin

Kernel Trick makes 

computations fast
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Support Vector Machines 

Gaussian Kernel capable of 

classifying complicated domains 
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Gaussian Process Learning



9 https://medium.com/towards-artificial-intelligence
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Deep Neural Networks

Left: ImageNET Database

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert  

Reversible Architectures for Arbitrarily Deep ResNNs. in 

review, arXiv, 2017. 

A. Mahendran, A Vedaldi Understanding deep image 

representations by inverting them. CVPR, 2015. 

Stability Requirement:  Network is forward stable when it does not amplify perturbations of the input 

features due to, for example, noise or adversarial attacks.

✲

✲ Current record is 88.61% by EfficientNet-L2-475 (in review arxiv.org/pdf/2010.01412v2.pdf)

 Google Research on Sharpness Aware Minimization                       
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Random Decision Forest
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Random Decision Forest

Original Function

Samples

Tree Predictions

Forest Mean/STD and Error
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Bayesian Neural Networks

Unlike deterministic Neural Networks(left) that have a fixed value of their 

parameters, Bayesian Neural Networks(right) has a distributions linking nodes.
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Stochastic Neural Network

How to account for uncertainty and control machine learning 
training.

Challenge: Adaptation, robustness, and speed.

Stochastic model equation Noise componentActivation function

Control process Control terms

Cost function
Measured data
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Bayesian vs Stochastic Neural Networks

Deterministic Sample Uncertainty in Data

BNN SNN-MP
Archibald, Boa, Cao, & Zhang, 'Uncertainty QuantIfication in Deep Learning through Stochastic Maximum Principle', Submitted, 2020

• Robust Training

• Improved accuracy in 

prediction and uncertainty

• Adaptive Control

SNN-MP Weighted Prediction
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Generative Pre-trained Transformer (GPT) - 4
From ‘Attention Is All You Need’ by Vaswani et al. doi.org/10.48550/arXiv.1706.03762

English-to-
German and 
English-to-French 
newstest2014 
tests

https://doi.org/10.48550/arXiv.1706.03762
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Experimental Science at DOE Facilities

▪ Penetrate metals without 
absorbing

▪ Highly sensitive to water and 

hydrocarbons

▪ High contrast to light elements

▪ Sensitivity to magnetism

▪ Measure dynamics and 

structure 

Why Neutrons, X-Rays or Electrons?

R. Pynn, ‘Neutron Scattering’, LANL

Neutrons X-Rays
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Small Angle Scattering (SAS)

source

p = distance distribution function 
R = Instrument Resolution function

SAS Model for distance distribution function

I ∝ p ∗ R



19

Small Angle Electron Scattering

Incident beam

X and Y 

beam motion

Scattered 

transmitted beam

Dark Field 

Detector

Bright Field 

Detector

Scanning Transmission Electron Microscopy

(a) Fresnel micrograph of Permalloy 
squares and (c) disks.  Small angle 
Lorentz deflection data of the 
single square (b)  and disk (d). 

AIP Advances. doi:10.1063/1.3701703
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DOE Landscape Experimental Facility Landscape

Neutron Scattering Facilities

Two SAS Instruments One SAS Instruments

X-Ray Light Sources

Six SAS Instruments

Twelve SAS Instruments

Five SAS Instruments

Electron Sources

https://neutrons.ornl.gov/instruments
https://neutrons.ornl.gov/instruments
https://lcls.slac.stanford.edu/instruments
https://small-angle.aps.anl.gov/aps-saxs-beamlines
https://www.bnl.gov/nsls2/beamlines/
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Model ≡  𝑤𝐴

Location A

Data

Model ≡  𝑤𝐵

Location B

Data

Model ≡  𝑤𝐶

Location C

Data

Central Hub

Gold Standard Federated 
Learning Comparison

Model ≡  𝜌

Single Location

Data

𝑤𝐴

𝑤𝐵

𝑤𝐶

𝑤𝐴

𝑤𝐵

𝑤𝐶

FedAvg Update
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Model ≡  𝑤𝐴

Location A

Data

Model ≡  𝑤𝐵

Location B

Data

Model ≡  𝑤𝐶

Location C

Data

Central Hub

Gold Standard Federated 
Learning Comparison

Model ≡  𝜌

Single Location

Data

𝑤𝐴

𝑤𝐵

𝑤𝐶

𝑤𝐴

𝑤𝐵

𝑤𝐶

Accelerated Update
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Dynamical Low-Rank Approximation for Neural Networks

*Research and code from Steffen Schotthöfer at ORNL
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Federated Learning + INTERSECT + Laboratory of the Future
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Federated Learning + INTERSECT + Laboratory of the Future

Autonomous Chemistry Autonomous Spectroscopy



26



27



28

Federated Learning for Experimental Facilities (IBM/ORNL/RedHat/SLAC)

Neutrons X-Ray

Electrons

secure 
science

secure 
science

secure 
science

Federated Learning across different facilities and security domains increase 

the accuracy in reconstruction, model classification, and decompression 
rate.  Using SasView we build-in community based physical knowledge. 
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ML Data
ML Opt. Single 

Fac
ML Opt. Fed 

Learn
ML Opt. Uni. 

Server
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Computational Cost in Training and Prediction

Left: Visulization of the privacy preservation 
methods used in our study 
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ML Grid Generation Fusion REactor Design and Assessment 
(FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)

Gaussian Process Surrogate Linear Spline Surrogate
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Gaussian Process Surrogate Linear Spline Surrogate

ML Grid Generation Fusion REactor Design and Assessment 
(FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)



33

Gaussian Process and Linear Spline Low Resolution 
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Gaussian Process Surrogate Linear Spline Surrogate

ML Grid Generation Fusion REactor Design and Assessment 
(FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)
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DS1 LS23DS2LS12 DS2

ML Grid Generation Fusion REactor Design and Assessment 
(FREDA) and Scrape-Off Layer Plasma Simulation(SOLPS)
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ML Grid Generation

DS1 DS2LS12
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ML Grid Generation

DS2 DS3LS23
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ML Grid Generation

DS1 LS23DS2LS12 DS3
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ML Grid Generation

DS1 LS23DS2LS12 DS2
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Initialize grid structure and 

determine ranges for 

variables 𝑐𝑙, 𝑐𝑟, 𝑐𝑡, 𝑐𝑏, 𝑐𝑚, ǁ𝑐𝑠 , 

where 𝑐∙ = 𝑐, 𝑁, 𝛼  and ǁ𝑐𝑠 =

𝑁, 𝛼 . PDF is 𝑓 𝑥 =
𝑒𝛼𝑥−1

𝑒𝛼−1

Functional Representation of Grids – Initialize

Given 

boundary 

geometry, 

psi field, 

and 
diverter 

plate 

locations
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Functional Representation of Grids – ǁ𝑐𝑠
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Functional Representation of Grids 

   

  

  

  

 

 

 

 𝑐𝑙 , 𝑐𝑟 , 𝑐𝑡 , 𝑐𝑏 , 𝑐𝑚, 𝑠

   

  

  

  

 

 

 

 ǁ𝑐𝑡𝑙 , ǁ𝑐𝑡𝑟 , ǁ𝑐𝑚𝑙 , ǁ𝑐𝑚𝑟, ǁ𝑐𝑏𝑙 , ǁ𝑐𝑏𝑟
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Thanks!
Questions???
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