Digital Signal Processing & Data Science Challenge

Simon McIntosh ITER Organization

Monday 9th December 2024

ITER International School Nagoya, Japan

Bio:

Aerospace Engineering University of Bristol PhD Fluid Mechanics University of Cambridge Postdoc / Lecturer University of Oxford Staff Culham Center for Fusion Energy Staff ITER Organization Scientific Data Processing

china eu india japan korea russia usa

This presentation focuses on applied Data Science for Fusion.

The elephant in the room.

Applied Data Science in Fusion.

Kaggle Challenges.

The elephant in the room is over-fitting.

3

"All models are wrong, but some are useful". George Box Non-linear parametrizations can fit arbitrarily complexity structures.

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk".

Enrico Fermi

John von Neumann

5

Simple basis functions can generate complex shapes.

Scientific Data is a valuable product of expensive experiments. If not properly archived the value of this data depreciates rapidly.

Capital cost ~0.5 billion 2014 US dollars

Operating cost ~200,000 euros per day

Code Data is read more often than it is written. Code Data should always be written in a way that promotes readability.

The IMAS Data Dictionary defines an extensive set of attributes. Attribute sets are grouped as Interface Data Structures IDSs.

amns_data barometry bolometer bremsstrahlung visible calorimetry camera ir camera_visible camera_x_rays charge_exchange coils_non_axisymmetric controllers core_instant_changes core_profiles core sources core transport cyrostat dataset_description dataset fair

disruption distribution sources distributions divertors ec launchers ece edge profiles edge_sources edge_transport em coupling equilibrium gas_injection gas_pumping gyrokinetics hard_x_rays ic_antennas interferometer iron core

langmuir_probes Ih antennas magnetics mhd mhd_linear mse nbi neutron_diagnostic ntms pellets pf_active pf passive plasma_initiation polarimeter pulse schedule radiation real time data reflectometer profile

refractometer sawteeth soft_x_rays spectrometer mass spectrometer uv spectrometer_visible spectrometer_x_ray_crystal summary temporary thomson_scattering tf transport_solver_numerics turbulence wall waves workflow

Diagnostics

Heating systems

The IMAS Data Dictionary defines attributes in a tree-like structure. Coordinates, units and descriptions are attached to these attributes. ITER Physics Data Model Documentation for equilibrium

Description of a 2D, axi-symmetric, tokamak equilibrium; result of an equilibrium code.

Notation of array of structure indices: itime indicates a time index; i1, i2, i3, ... indicate other indices with their depth in the IDS. This notation clarifies the path of a given node, but should not be used to compare indices of different nodes (they may have different meanings).

Lifecycle status: active since version 3.1.0

Last change occured on version: 3.42.0

Back to top IDS list

Flat display Show/Hide errorbar nodes By convention, only the upper error node should be filled in case of symmetrical error bars. The upper and lower errors are absolute and defined positive, and represent one standard deviation of the data. The effective values of the data (within one standard deviation) will be within the interval [data-data_error_lower, data+data_error_upper]. Thus whatever the sign of data, data_error_lower relates to the lower bound and data_error_upper to the upper bound of the error bar interval.

Full path name	Description	Data Type	Coordinates
▶ ids_properties	Interface Data Structure properties. This element identifies the node above as an IDS	structure	

The IMAS Data Dictionary is in the process of being open-sourced. Check back on github.com/ITER-Organization in the coming months.

Repositories

IMAS Data is now available as self-describing netCDF files. Two of the Data Science Challenges use a netCDF input format.

- Store IDS data in a "tensorized" form
 - Equilibrium example:

time_slice(i)/profiles_2d(j)/psi(k,l)

-> time_slice.profiles_2d.psi(i,j,k,l)

2D data in 2 levels of AoS becomes a 4D array

- Labelled dimensions and coordinates
 - o time_slice.profiles_2d.psi(i,j,k,l) has 4 dimensions
 - 1. time with coordinate time
 - 2. time_slice.profiles_2d, which is an index
 - 3.time_slice.profiles_2d.grid.dim1
 - 4.time_slice.profiles_2d.grid.dim2
- Additional metadata for
 - Units (Wb)
 - Documentation (Values of the poloidal flux at the grid in the poloidal plane)
 - Metadata follows the "CF Conventions" (developed for geosciences) as much as possible

12

Self-describing IMAS data without a custom Access Layer (xarray).

3

The alignment of ITER's 17 meter high, 360 tonne D-shaped Toroidal Field magnets is a feat of precision engineering.

Exceptionally low tolerances that are repeatable and stable over time.

Data Science in Fusion is not restricted to the Physics domain. Gaussian Process Regression used on ITER to reconstruct coil centerline.

New metrology for Sector #7 shared with Science Division last week.

16

The orientation of each TF Coil affects its shape (Coil #8 Japan)

Deformation x500

7

Ite

The orientation of each TF Coil affects its shape (Coil #9 EU)

Deformation x500

ite

Metrology of TF Coils in the vertical improves EU-JA agreement

Coil metrology carried out with a common orientation reduces the magnitude of the 'vendor' error field

Deformation x500

The Extended Kalman Filter: a sequential Bayesian filter

Dynamic model for a car's position $x_k = f_k(x_{k-1}, u_k) + w_k$ with actuators u_k and **linearization** F_k , affected by noise w_k with model uncertainty covariance $Q_k = E[w_k w_k^T]$

and a series of **measurements** y_k , affected by noise v_k with **measurement covariance** $R_k = E[v_k v_k^T]$

Sawtooth model allows realistic inter-measurement prediction

Adaptive EKF scheme: RAPTOR model parameters are continuously adapted based on the past measurements, allowing for realistic predictions for time points between measurement points

[1] O. Sauter et al, Varenna (1999)

from S. Van Mulders et al, to be subm. to Nuclear Fusion

TCV

Data Science Challenges of the ITER International School 2024

MAST Plasma Current

Infer plasma current produced by CCFE's Mega Ampere Spherical Tokamak from discrete magnetic diagnostic data.

MAST Plasma Volume

Infer the volume of plasmas produced by the CCFE's Mega Ampere Spherical Tokamak using frames from a wide-angle visible spectrum camera.

MAST Plasma Equilibrium

Infer two-dimensional poloidal flux maps produced by the EFIT++ equilibrium reconstruction code from a diverse set of diagnostic measurements.

The Data Science Challenges have been built on top of FAIR-MAST

A fusion device data management system.

S. Jackson, S. Khan, N. Cummings, et al

Pandata is a modern Python data-analytics stack.

You will find the following three packages useful for the challenges.

pandas

- Columnar data
- Very good indexing
- Suggested for writing submission.csv files

• Can open netCDF files

xarray

- Very good indexing
- Support for n-D arrays
- Supports labelled data

- Good entry ML library
- Fast learning curve
- Consistent API
- fit(X_train, y_train)
- predict(X_test)

The Data Science Challenges will run on the Kaggle platform.

kaggle Create Home Competitions m Datasets Models $\langle \rangle$ Code Discussions পি Learn More \sim Your Work

VIEWED

MAST Plasma Curre...

5 Y 8 Ē View Active Events Q Search

Overview

Start

9 days ago

MAST Plasma Current

Infer plasma current produced by CCFE's Mega Ampere Spherical Tokamak from discrete magnetic diagnostic data.

Overview Data Code Leaderboard Rules Team **Submissions** Models Discussion

This competition is the first of three Data Science challenges proposed for the ITER International School 2024.

Goal: infer a one dimensional time-series waveform of plasma current recorded by the Mega Ampere Spherical

Data for this competition has been made available by the open-source MAST Data Catalog. I thank the curators of this FAIR dataset, Samuel Jackson, Nathan Cummings, Saiful Khan, and the wider MAST community for this initiative.

Tokamak MAST from the provided set of discrete magnetic field measurements.

Settings

ſ

1

Close

4 days to go

1

Competition Host

Simon McIntosh

Prizes & Awards Kudos Edit Does not award Points or Medals

Participation

0 Entrants 0 Participants 0 Teams 0 Submissions

Tags

Mean Absolute Percentage Error

Accessing and submitting data from a Kaggle Notebook is simple.

notebook2757a6b67a Draft saved ぷ Share C Save Version File Edit View Run Settings Add-ons Help Draft (35m) Run All Code -Session Output (172KiB / 19.5GiB) ^ mape = sklearn.metrics.mean_absolute_percentage_error(y_test, y_pred) print(f"MAPE {mape:1.3f}") /kaggle/working ς5 mae = sklearn.metrics.mean_absolute_error(y_test, y_pred) submission.csv print(f"MAE {mae:1.3f}") Table of contents \checkmark MAPE 5.023 MAE 9.959 Submit to competition + Markdown + Code MAST Plasma Current submission = pd.DataFrame(pipe.predict(test), columns=["plasma_current"]) submission.index.name = "index" submission.to_csv("submission.csv") LATEST SCORE BEST SCORE DAILY SUBMISSIONS 0 / 5 used **⊥** Submit sns.set_context("notebook") axes = plt.subplots(figsize=(8, 6))[1] Session options sort_index = np.argsort(X_test.time) _X_test = X_test.iloc[sort_index] _y_test = y_test.iloc[sort_index] Schedule a notebook to run for shot_index in np.unique(X_train.shot_index): index = X test shot index == shot index

Accessing and submitting data locally is also straight forward.

Each challenge uses a different evaluation metric. See the Overview tab, Evaluation Section for further details.

Evaluation

•••

Submissions are evaluated on Mean Absolute Percentage Error between the predicted and observed plasma current.

Submission File

For each index in the test set, you must predict a value for the plasma_current variable. The file should contain a header and have the following format:

index,plasma_current 0,-4.993814753222239 1,-2.9837154151294385 2,-5.1550966427939215 3,-4.030642466070503 4,-3.3313901825856647 5,-4.605478179129648 6,-4.566414377376589 etc.

The Data Science Challenges will close at 11pm this Thursday. Submissions will be ranked using a private leaderboard.

Leaderboard	
-------------	--

★ Raw Data) (C Refresh

٩	Search leaderboard	

Public Private

This leaderboard is calculated with approximately 44% of the test data. The final results will be based on the other 56%, so the final standings may be different.

	#	Team	Members	Score	Entries	Last
1	椚	linear_regression.csv		3.77688		

Challenge #1 MAST Plasma Current

Challenge #2 MAST Plasma Volume

Challenge #3 MAST Plasma Equilibrium

Data variables:

center_column	(center_column_channel, time) float64 16kB
coil_currents	(coil_currents_channel, time) float64 19kB
coil_voltages	(coil_voltages_channel, time) float64 13kB
flux_loops	(flux_loops_channel, time) float64 19kB
outer_discrete	(outer_discrete_channel, time) float64 26kB
saddle_coils	<pre>(saddle_coils_channel, time) float64 13kB .</pre>
dalpha_mid_plane_center	(time) float64 3kB
dalpha_mid_plane_wide	(time) float64 3kB
dalpha_tangential	(time) float64 3kB
hcam_l	(hcam_l_channel, time) float64 58kB
hcam_u	(hcam_u_channel, time) float64 58kB
ne	(time, major_radius) float64 210kB
ne_core	(time) float64 3kB
pe	(time, major_radius) float64 210kB
te	(time, major_radius) float64 210kB
te_core	(time) float64 3kB
shot_index	(time) float64 3kB
magnetic_flux	(time, z, major_radius) float64 14MB
tcam	(tcam_channel, time) float64 58kB

· · · ·

. . .

In summary this talk has warned you of the dangers of overfitting and has given you the opportunity to learn more via the challenges.

Remember the elephant.

Data Science Challenge facilitated by FAIR data and open-source tools.

Doing is often the best way to learn. Good luck!

