

Interferometry and Polarimetry in Magnetic Fusion Devices

WEIXING DING University of Science and technology of China Nagoya, Dec.11, 2024

Introduction to myself

- Chair professor at the University of Science and Technology of China (USTC), **Hefei, China.**
- § **PhD in 1991 at University of Science and Technology of China**
- § **Alexander von Humboldt Fellow (1994-1996)**
- § **Research fellow at University of Saskatchewan in Canada (1996-1997)**
- § **Post-doctor fellow at Oak Ridge National Laboratory, Oak Ridge, TN,USA (1997- 1999)**
- § **Researcher at University of California, Los Angeles, CA, USA (2000-2018)**
- Fellow of the American Physical Society (APS fellow 2010)
- § **Research interests : magnetic confinement plasma physics and the development of plasma diagnostics (e.g. interferometer and polarimeter).**

Acknowledgement

M.A. Van Zeeland¹, T.N. Carlstrom¹, D. Du¹, A. Gattuso¹, F. Glass¹, P. Mauzey¹, C. Muscatello¹, R.C. O'Neill¹, M. Smiley¹, J. Vasquez1, D.L. Brower2, J. Chen2 ,Y.Q.Chu2 , W. F. Bergerson2 ,D. Finkenthal3, A. Colio3 , 4D. Johnson, 4R. Wood, 5C. Watts, P. Xu6, J. H. Irby6 , T.Lan7,H.Zhang7 , Z.Q. Bai7, Z.L. Mao7 ,*W.Mao7,Q.F.Zhang7 , J.L.Xie7 ,G.Zhuang7 , H. Q. Liu8, Y. X. Jie8, Z. Y. Zou8, J. P. Qian8, W.M. Li8, Y. Yang8, X. C. Wei8, T. Lan8, H.Lian8*

1General Atomics , San Diego, USA 2University of California, Los Angeles, USA 3Palomar Scientific Instruments , USA 4PPPL 5ITER Organization 6Massachusetts Institute of Technology, Cambridge, MA, USA 7University of Science and Technolodge of China 8Institute of Plasma Physics, Chinese Academy of Sciences

Part I: Interferometer

- **(1) Basics and wave length selection for magnetized plasmas;**
- **(2) Homodyne Optical Fiber Interferometer for a** θ **-pinch (** λ **=1.55** μ **m);**
- **(3) Tangential Interferometry and Polarimetry (TIP) for ITER (** λ **=10.6** μ **m);**
- **(4) Dispersion Interferometer for EAST (** λ **=9.27** μ **m);**
- **(5) Solid-State source-based interferometer on KTX-RFP (**l **=**461 µ**m).**

Part II Polarimeter

- **Two wave polarimetry (Faraday effect and Cotton-Mouton effect) on C** $mode (\lambda=117\mu m);$
- **Three wave interferometer and polarimetry on EAST (** λ **=432** μ **m);**
- **Tangential Interferometer and Polarimetry (TIP) for ITER (** λ **=10.6** μ **m);**
- **PoPola Polarimetry for ITER (** λ **=119** μ **m);**
- **The application of line-integrated measurement to plasma vertical position.**

Part III Notes

(a) Dispersion relation for hot plasmas;

(a) Coupling between Cotton-Mouton and Faraday rotation;

(b) Coupling between Interferometer and Polarimetry .

Interference of Electromagnetic Waves

Interference is the phenomenon there are constructive or destructive patterns due to multiple waves meeting and superimposing in space.

Michelson interferometer

• **There are two monochromatic waves:**

$$
E_1 = E_{10} \cos(\omega t + \emptyset_1)
$$

$$
E_2 = E_{20} \cos(\omega t + \emptyset_2)
$$

• **The two waves superimposing:**

$$
I \sim |E_1 + E_2|^2 = E_{10}^2 + E_{20}^2 + 2E_{10}E_{20} \cos(\Delta \phi) = A + B \cos(\Delta \phi)
$$

$$
\Delta \emptyset = \emptyset_2 - \emptyset_1 = \frac{\omega}{c} N \Delta l \quad (\text{refractive index } N = \frac{c}{v_p})
$$

The intensity *I* varies with the phase difference $\Delta\emptyset$ (or ΔL).

Two Common Interferometer Techniques

 \triangleright When the laser frequency ω and the object thickness *l* are known, the refractive **index can be obtained by measure the phase difference** ∆∅**.**

Electromagnetic Waves in Vacuum and Plasmas

Measurement of light speed in plasmas is a fundamental principle for interferometer and polarimetry application

Dispersion Relations for Electromagnetic Waves in Magnetized Plasmas

Interferometer –Plasma Density Measurement

Phase shift relates to plasma density

 $\frac{2}{p_e} = \frac{n_e e^2}{\sqrt{2}}$

 $m_e \varepsilon_0$

 $(\omega \gg \omega_{pe})$

§ **Phase difference between reference beam and probing beam**

$$
\Delta \varphi = \frac{2\pi}{\lambda} \int_{Z_1}^{Z_2} [N(z) - N_0(z)] dz
$$

$$
\Delta \varphi = 2.82 \times 10^{-15} \lambda \int n_e dl
$$

 $+\frac{2\pi}{\lambda}N_0\Delta l$

If optical paths are changed due to vibration or thermal expansion

§ **Reference beam (vacuum, air):**

 ω_{pe}^2

 $\frac{\omega_{pe}}{\omega^2}$ ω_{pe}^2

 $\overline{\mathbf{2}}$

§ **Probing beam (plasma):**

 $N_0 \sim 1$ (constant)

 $N = 1 - \frac{1}{2}$

Phase difference $\Delta \varphi$ is proportional to the path integral of the electron density n_e .

 0.2

 0.4

Wave Length Selection for Interferometer

 $50x\alpha$

 x/m

Density Profile on EAST Tokamak 10^{19} / m^3

a) Frequency $(\boldsymbol{\omega} \gg \omega_{pe})$, but shorter **wavelength is subject to vibrations and has less phase change; The Cut-off density:**

$$
n_c = \frac{\omega^2 m_e \varepsilon_0}{e^2}
$$

Some wavelength selection constrains

b) Long wavelength has more phase change, but probing beam may be deflected due to density gradient; For a cylindrical plasma the angle of refraction

$$
\alpha(x) \simeq \frac{n_0}{n_c} \frac{2x}{a^2} \sqrt{a^2 - x^2} \approx \left[\frac{e^2}{(4\pi^2 c^2 \varepsilon_e m_0)} \right] n_0 \lambda^2
$$

c) One also has to consider availability of light sources and detectors.

Compromise among phase resolution, vibration, refraction and light sources,

Interferometer –Density Measurement

Homodyne and Heterodyne Techniques

Homodyne Optical Fiber Interferometer (1.55 μ **m)**

Simple setup provides density measurement for theta-pinch

Homodyne Optical Fiber Interferometer For θ-pinch

T. Lan, Z. Bai, H. Zhang, et al., Rev. Sci. Instrum. 95, 103514 (2024).

Density measurement of θ-pinch plasmas

Here vibration and pathlength changes are negligible due to short time scale !

Optical Fiber Interferometer : Cons vs Pros

Pros:

- **Excellent sensitivity and a large dynamic range. Immunity to electromagnetic interference.**
- **Compact size with rugged packaging, and low cost .**

Cons:

- **Application from visible to near infrared wavelength, wavelength is suitable for high plasma density measurements (such as Pinch, Compact torus and magnetic inertial fusion etc) not tokamak plasmas;**
- **Vibration, low frequency noise (no frequency modulation) etc .**

$$
\varphi = -\lambda r_e \int n_e \, dL
$$

Such a simple setup doesn't work for long pulse tokamak plasmas!

Interferometer for Tokamak Plasmas

TIP is One of the Primary Density Diagnostics on ITER

Two-Color Interferometer For ITER TIP

• **Interferometer phase shift between the plasma and reference legs is caused primarily by mechanical vibrations and plasma index of refraction**

$$
\varphi = -\lambda r_e \int n_e \, dL + \frac{2\pi}{\lambda} N_0 \Delta l
$$

Vibration phase 10-100 x phase from plasma Or path length change in a long pulse discharge

• **To separate the vibration and plasma phase shifts, two lasers at different wavelengths are used in each leg**

$$
\int n_e dL = \frac{\lambda_{CO2}}{r_e (\lambda_{CO2}^2 - \lambda_{QCL}^2)} \left[\phi_{CO2} - \frac{\lambda_{QCL}}{\lambda_{CO2}} \phi_{QCL} \right]
$$

10.59 μ m CO2 laser 5.22 μ m QCL laser

Vibration compensation is usually needed for short wavelength interferometer in long pulse plasmas like tokamaks

Basic Elements of TIP Interferometry Measurement – With

Vibration Compensation Added

Basically two different wavelength interferometers are working together.

Two-Color Interferometer Measurements for DIII-D Plasmas

- **Total interferometer phase by vibration 104-105 Deg. much greater than phase shift by DIII-D plasmas.**
- **Plasma induced phase shifts in DIII-D < 800 Deg.**
- **Phase noise/ or uncertainty is low**
	- **δɸint < 2**° **(ITER flattop ɸint~3000**°**)**

Vibration compensation is required for a short CO2 wavelength in tokamaks

An alternative two-color method -dispersion interferometer (Homodyne tech.)

Using one CO₂ laser instead of two and frequency doubler to provide two-color lasers

Interference signal of second harmonic:

(1 2) ³ cos cos 2 *p e c nL I A B* jj ^j *A B* w æ ö = + - =+ + ç ÷ è ø () e 2 arccos 1 n 3 ^w ^f é ù - ⁼ - - ê ú *^p* ë û *A c L B*

The mechanical vibration is perfectly cancelled out due to same optical path.

This is a homodyne system which requires stable amplitude of signals. T. Akiyama, K. Kawahata, S. Okajima and K. Nakayama,

Plasma and Fusion Research 5 (2010)S1041.

Toroidal CO₂ Dispersion Interferometer on EAST

Toroidal Dispersion Interferometer can provide density feedback control near the density limit where Long wavelength beam might be deflected by large density gradient

(l**=**461µ **m) Interferometer (0.65THz solid state source) on KTX Reversed Field Pinch**

$$
\Delta \varphi = 2.82 \times 10^{-15} \lambda \int n_e dl + \lambda v_0 \Delta l
$$

No vibration Compensation

For long wavelength

25

local oscillator provides a beat frequency (IF) for heterodyne measurement

 $I_1 = I_A + I_R \cos(\Delta \omega + \varphi)$ $\Delta \omega = \omega_1 - \omega_2 \ll \omega_{1,2}$

Amplitude of raw signals during plasma

Amplitude of raw signals during plasma
discharge
from outside board to inside board

Evolution of electric density profiles

26

Polarimetry – Faraday-effect Based Magnetic Field Measurement

Faraday Rotation Effect in Plasmas

The linearly polarized EM wave is equivalent to the superposition of L-wave and R-wave.

The phase velocity of L-wave and R-wave is different, so there is a Faraday rotation angle Ψ_F between the **linearly polarized incident wave and the emergent wave.**

Two-wave Measurement Technique of Polarization

□ R-waves and L-waves are offset in frequency

□ the beat frequency signal: $|ω_1 − ω_2| → Ψ_F$

(Faraday effect Polarimeter)

$$
\Psi_F = \frac{\varphi_L - \varphi_R}{2} \qquad (\frac{N_L - N_R}{2} = \frac{1}{2} \frac{\omega_{pe}^2}{\omega^2} \frac{\omega_{ce}}{\omega})
$$

$$
\Psi_F = 2.62 \times 10^{-13} \lambda^2 \int_{Z_1}^{Z_2} n_e B_z dz
$$

(Cotton-Mouton Effect Polarimeter)

$$
N_o - N_x = \frac{1}{2} \frac{\omega_{pe}^2}{\omega^2} \frac{\omega_{ce}^2}{\omega^2}
$$

$$
\phi_{CM} \text{ [rad.]} = \phi_0 - \phi_X
$$

= 2.4 × 10⁻²⁰ λ [mm]³ $\int n_e \text{ [m}^{-3}] B_{\perp} \text{ [T]}^2 dl \text{ [m]}$

MIT C-mod Laser Faraday effect Polarimetry ($\lambda = 117 \mu m$ **)**

Faraday Effect used to constrain magnetic equilibrium reconstruction to obtain current profile

Cotton-Mouton Effect Polarimeter on C-Mod

Instead R and L waves, *Probing plasma with linear orthogonal light*

- 1) Cotton-Mouton and Faraday effect measurements consistent with **EFIT**
- 2) C-M effect can be used to measure density as B_T is known

 $\phi_{\rm CM}$ [rad.] = $\phi_{\rm O} - \phi_{\rm X}$

Three-wave Measurement Technique of Polarization (LO beam added)

Rommers & Howard, 1996 Ding et al., 2003

Faraday rotation angle

$$
\Psi_F = \frac{\varphi_L - \varphi_R}{2} \qquad (\frac{N_L - N_R}{2} = \frac{1}{2} \frac{\omega_{pe}^2}{\omega^2} \frac{\omega_{ce}}{\omega}) \qquad \Delta \varphi = \frac{\varphi_L + \varphi_R}{2} \qquad (\frac{N_L + N_R}{2} = 1 - \frac{1}{2} \frac{\omega_{pe}^2}{\omega^2})
$$

$$
\Psi_F = 2.62 \times 10^{-13} \lambda^2 \int_{Z_1}^{Z_2} n_e B_z dz \qquad \Delta \varphi = 2.82 \times 10^{-15} \lambda \int n_e dl
$$

POlarimetry-INTerferometer (POINT) on EAST

l **Time resolution: 1**µ**s**

Three wave technique-simultaneous measurements of density and magnetic field

Digital Phase Demodulator for Three Wave System

$$
I_sig = 2E_R E_L \cos[(\omega_1 - \omega_2)t - (k_R - k_L)t]
$$

+
$$
E_R E_{LO} \cos[(\omega_1 - \omega_0)t - k_R t]
$$

+
$$
E_L E_{LO} \cos[(\omega_2 - \omega_0)t - k_L t]
$$

 $I_{\perp}ref = 2E_RE_L\cos[(\omega_1 - \omega_2)t]$ $+E_R E_{LO} \cos[(\omega_1 - \omega_0)t]$ $+E_L E_L$ cos[($\omega_2 - \omega_0$)t]

$$
I_sig = A exp(i[(\omega_1 - \omega_2)t - (k_R - k_L)l])
$$

$$
I_ref = B exp(i[(\omega_1 - \omega_2)t])
$$

Demodulate

$$
\left[(k_R - k_L)l = \arctan \frac{Im(I_{sig}I_{ref}^*)}{Re(I_{sig}I_{ref}^*)} \right]
$$

Y.Jiang, et al. RSI, 1997

Real-time calculate density and Faraday rotation angle,Output: 250 kS/s . *Palomar Scientific Instruments,*

A Long Pulse Discharge 100s on EAST

Real -time density and Faraday rotation angle

Current profile Measurement with constrains from Faraday effect polarimetry

Time history of 11-chord density and Faraday rotation density **Faraday rotaion angle** 20 $\overline{10}$ 2θ 10 28
10 $2⁰$ 10 $1⁰$ (10^{19} m^{-2}) $rac{6}{6}$
 $rac{1}{10}$ c^{e} ة.
10- -10 -20 -10 $-2₀$ -18 -5
-10 n $\overline{2}$ 6 $\overline{\mathbf{4}}$ 8 $\bf{0}$ $\overline{2}$ 6 8 4 $time(s)$ $time(s)$ **Faraday effect polarimetry provides current profile for**

fusion plasmas with fast time response!

Polarimeter can be used for density measurement on ITER

Polarimetry can be density measurement while toroidal magnetic field B_T **is known.**

- Interferometer phase shifts >> 360°
	- Need to count "fringes" (1 fringe $= 360°$)
	- Signal loss \rightarrow Loss of fringe count \rightarrow loss of measurement

$$
\int n_e dL = \frac{\lambda_{CO2}}{r_e (\lambda_{CO2}^2 - \lambda_{QCL}^2)} \left[\phi_{CO2} - \frac{\lambda_{QCL}}{\lambda_{CO2}} \phi_{QCL} \right]
$$

- Polarimetry measures Faraday rotation phase shifts < 360°
	- No need to count fringes
	- Used to correct interferometer after a fringe skip
	- Also provides backup density measurement

$$
\Psi_F = 2.62 \times 10^{-13} \lambda^2 \int n_e B_z dl
$$

Fringes count errors are NOT allowed for plasmas control!!

Two-Color Interferometer + Faraday effect Polarimetry for ITER Density Control

Polarimeter corrects fringe skip of interferometer

- **Interferometer phase shifts >> 360 degree , history dependence, loss signals and loss history.**
	- $-$ Need to count "fringes" (1 fringe = 360°)
	- Signal loss \rightarrow Loss of fringe count \rightarrow loss of measurement
- **Polarimeter phase is less than 1 fringe so absolute phase is recovered when signal returns**
- **Polarimeter can be used to recalibrate the interferometer**

Interferometer is still needed for its better density resolution; Polarimeter helps to correct fringe skip in case to ensure the relaibility of density measurement for fusion reactor.

PoPola –Polarimetry on ITER

B.W.Rice, et al. RSI, (1992). H.Soltwisch, RSI. 1986

- **13 laser probing beams at wavelength** 119µ**m (a few hundred mW) ;**
- **Faraday rotation and Cotton-Mouton effects are measured to reconstruction of current profile;**
- **Polarization modulation by mechanical rotation (~ a few hundred Hz) of a waveplate. R. Imazawa,** *et al* **Fusion Eng. Design, 2023**

Application of line integrated Faraday rotation to plasma vertical position measurement

$$
B_R(R,\!Z_c)\!=\!0
$$

Determine Z where

$$
\Psi(\mathsf{R},\mathsf{Z}) = \Psi(Z_0) + (Z - Z_0)\frac{\partial \Psi}{\partial z} + \dots = 0
$$

$$
Z_F = \frac{\Psi(0)}{-\frac{\partial \Psi(0)}{\partial z}}
$$

Direct using line-integrated Faraday rotation data to determine the vertical position of plasmas

W.X.Ding, H.Q.Liu, et al. Rew. Sci.Instrum. Vol.89,2018

Vertical Position Measurement by Using Three Central Chords

Part III. (a) Dispersion Relation for Hot Plasmas

In hot plasmas, Doppler shift of the frequency kv and change of electron mass both contribute to refractivity. Electron pressure is not perturbed for transverse mode.

V.V. Mirnov , W.X.Ding, D.L Brower et al., PoP, 2007

P44 *Relativistic effect must be included for interfrometer and polarimetry for finite temperature plasmas.*

Non-relativistic and weakly relativistic thermal effects contribute with opposite sign

 \cdot Overall increase of the refractive index N^2 due to relativistic γ - factor

 $N^2 = 1 - \frac{\omega_{pe}^2}{\omega^2} - \frac{\omega_{pe}^2}{\omega^2} \left(\frac{T_e}{m_e c^2} - \frac{5T_e}{2m_e c^2} \right), +5\% \to -7.5\%, T_e = 25keV$ non-relativistic cold plasma combined model

• **Relativistic corrections are larger than Doppler shift terms for interferometry and Faraday-effect polarimetry**

a) earlier non-relativistic model predicted increase of Ψ_F **with Te**

$$
\Delta \Psi_F^{(NR)} / \Psi_F^{(c)} = 3(T_e / m_e c^2) \simeq +15\%
$$

(S. Segre, V. Zanza, PoP, 2002) Introduction to Plasma Physics and Controlled Fusion F.F. Chen

b) later relativistic calculations resulted in the opposite sign

$$
\Delta \Psi_F^{(R)}/\Psi_F^{(c)} = -2(T_e/m_ec^2) \simeq -10\%
$$

(V.V. Mirnov et al., PoP, 2007)

• **Reduction of the Doppler shift correction for the Cotton-Mouton effect (+60% + 22.5%)**

Experimental Evidence of the weakly relativistic model on JET

Difference between induced ellipticity measured on JET and calculated from the cold plasma \mod el *χ* − χ _c plotted versus B_T^2 ∫ Te ne dz *(O.P. Ford et al., PPCF, 2009)*

Solid lines illustrate cold plasma, non-relativistic and relativistic models (good agreement with the relativistic calculations)

First observation of the relativistic effects in plasma polarimetry

Part III: (b) Coupling between Cotton-Mouton and Faraday Rotation

In tokamaks, there are perpendicular magnetic fields along probing laser due to magnetic shear

$$
N_{\pm}^{2} = 1 - \frac{\omega_{ce}^{2}/\omega^{2}}{1 - \frac{\omega_{ce}^{2}/\omega^{2} sin^{2} \theta}{2(1 - \frac{\omega_{pe}^{2}}{\omega^{2}})} + \left[\frac{\omega_{ce}^{4}/\omega^{4} sin^{4} \theta}{4\left(1 - \frac{\omega_{pe}^{2}}{\omega^{2}}\right)^{2}} + \frac{\omega_{ce}^{2}}{\omega^{2}} cos^{2} \theta\right]^{1/2}}
$$

Appleton-Hartree formula

$$
\varphi_{\text{FR}} = 2.63 \times 10^{-13} \lambda^2 \int n_e B_{\parallel} dl
$$

$$
\varphi_{\text{CM}} = 2.46 \times 10^{-11} \lambda^3 \int n_e B_{\perp}^2 dl
$$

Perpendicular Magnetic Field may impact Faraday rotation measurements

$$
E^{+} = {1 \choose -i/\alpha} \exp(i(\omega t - k_{+}z))
$$

\n
$$
E^{-} = {1 \choose i/\alpha} \exp(i(\omega t - k_{-}z))
$$

\n
$$
(\omega_{ce}/\omega)\sin^{2}\theta \qquad [1 + (\omega_{ce}/\omega)\sin^{2}\theta] \qquad]^{1/2}
$$

$$
\alpha = \frac{(\omega_{ce}/\omega)\sin^2\theta}{2(1-\omega_{pe}^2/\omega^2)\cos\theta} - \left[1 + \left(\frac{(\omega_{ce}/\omega)\sin^2\theta}{2(1-\omega_{pe}^2/\omega^2)\cos\theta}\right)^2\right]'
$$

$$
\alpha
$$
 Polarization factor

P47 *H.Soltwisch, PPCF, 1993*

Comparison between experiments and analytic calculation \mathbb{C}

J.Chen,W.X. Ding, D.L. Brower, PPCF (60),085001(2018)

Part III: (c) Coupling between Interferometer and **Faraday Rotation for three wave system**

$$
\varphi = -\lambda r_e \int n_e \, dL
$$

$$
\Psi_F = 2.62 \times 10^{-13} \lambda^2 \int n_e B_z \, dl
$$

It is often observed when density ramps up on EAST, Faraday rotation shows oscillations with a period corresponds to a fringe of interferometer.

Density measurement impacts on Faraday measurement

Probe beams with small amount of unwanted

signals Unwanted signals $E_{11} = A \cos(\omega_t t + \varphi_t) + \varepsilon A \cos(\omega_t t + \varphi_{1S})$ $E_{R1} = A \cos(\omega_R t + \varphi_R) + \varepsilon A \cos(\omega_R t + \varphi_{RS})$

 $\phi_{FR} = (\phi_R - \phi_L)/2$ Faraday Rotation

 $\varepsilon \ll 1$ Stray lights $\phi_I = (\phi_R + \phi_L)/2$

$$
\phi_{FS}=(\phi_{RS}-\phi_{LS})/2
$$

$$
I = (E_{L1} + E_{R1})^2 \sim 2A^2 \cos[(\omega_R - \omega_L)t + (\varphi_R - \varphi_L)] + \varepsilon A^2 \cos[(\omega_R - \omega_L)t + (\varphi_R - \varphi_{LS})]
$$

+ $\varepsilon A^2 \cos[(\omega_L - \omega_0)t + (\varphi_{RS} - \varphi_L)]$

Measured Phase shift including very little unwanted light :

 $\Psi = \arctan \frac{sin2\phi_F + 2\epsilon cos(\phi_I - \phi_{IS}) \times sin(\phi_F - \phi_{FS})}{cos2\phi + 2\epsilon cos(\phi_I - \phi_{IS}) \times cos(\phi_I - \phi_{FS})}$ $cos2\phi_F+2\epsilon cos(\phi_I-\phi_{IS})\times cos(\phi_F-\phi_{FS})$

$$
\Psi \approx 2\phi_F - 2\varepsilon \cos(\phi_I - \phi_{IS}) \times sin\phi_{FS}
$$

Density dynamics impacts on Faraday rotation measurement due to a small amount of stray light. It is also true for Cotton-Mouton Polarimetry.

Z.Y.Zou, et al Review of Scientific Instruments ,2018,vol.89:013510 H Lian, Y Q Chu, et al. RSI,2019, 90: 053501.

Stray light affects Faraday rotation

Stray light control is important for any polarimetry

Summary

- **Interferometer;**
- **Faraday effect Polarimetry;**
- **Cotton Mouton effect;**
- **Technique Notes**

(a) Temperature effect on dispersion relation of EM;

(b)Coupling between Faraday and Cotton Mouton effects;

(c) Coupling between Faraday rotation and Interferometer.

Additional references

- **1. S. K. Sheem, J. Appl. Phys. 52, 3865 (1981).**
- **2. J. Macdonald, S. N. Bland, and J. Threadgold, Rev. Sci. Instrum. 86, 083506 (2015).**
- **3. S. Zhang, C. Chen, T. Lan, et al., Rev. Sci. Instrum. 91, 063501 (2020).**
- **4. T. Lan, S. Zhang, W. Ding, et al, Rev. Sci. Instrum. 92, 093506 (2021).**
- **5. C. Chen, T. Lan, C. Xiao, et al, Plasma Sci. Technol. 24, 045102 (2022).**
- **6. T. Lan, Z. Bai, H. Zhang, et al., Rev. Sci. Instrum. 95, 103514 (2024).**
- **7. H.Q.Liu, et al.** *Rev. Sci. Instrum.* **87, 11D903 (2016)**
- **8. Z.Y.Zou, et al.** *Fusion Engineering and Design* **112 (2016) 251–256.**
- **9. Z.Y.Zou, et al.** *Rev. Sci. Instrum.* **87, 11E121 (2016)**
- **10. Z.Y.Zou, et al.** *Rev. Sci. Instrum.* **87, 11E121 (2016)**
- **11. H.Lian, et al.** *Rev. Sci. Instrum***. 90, 053501 (2019)**
- **12. W. F. Bergerson, P. Xu, J. H. Irby, D. L. Brower, W. X. Ding and E. S. Marmar, Review of Scientific Instruments 2012 Vol. 83 Issue 10**
- **13. J. Chen, W. X. Ding, D. L. Brower, D. Finkenthal and R. Boivin, Rev. Sci. Instrum. 2018 Vol. 89**
- **14. W. X. Ding, D. L. Brower, W. F. Bergerson and L. Lin, Review of Scientific Instruments 2010 Vol. 81 Issue 10**
- **15. W. X. Ding, D. L. Brower, B. H. Deng and T. Yates, Review of Scientific Instruments 2006 Vol. 77 Issue 10**
- **16. W. X. Ding, H. Q. Liu, J. P. Qian, D. L. Brower, B. J. Xiao, J. Chen, et al. Review of Scientific Instruments 2018 Vol. 89 Issue 10**
- **17. L. Lin, W. X. Ding and D. L. Brower, Review of Scientific Instruments 2012 Vol. 83 Issue 10**
- **18. W.X.Ding, H.Q.Liu, et al. Rew. Sci.Instrum. Vol.89,2018**
- **19. T. Akiyama, K. Kawahata, S. Okajima and K. Nakayama, Plasma and Fusion Research 5 (2010)S1041.**
- **20. T.Akiyama***, et al.* **Rev. Sci.Instrum. Vol.87, 11E133(2016).**
- **21. V.P.Drachev, et al. Rev.Sci.Instrum. Vol.64,1010(1993).**
- **22. M.A.Van Zeeland,** *et al.* **Rev.Sci.Instrum. Vol.84.043501(2013).**

