# **Edge radial electric field formation after the L-H transition**

# K. Kamiya

# *Japan Atomic Energy Agency (JAEA)*

December 14 - 18, 2015<sup>; [1</sup>] School of Nuclear Science and *Technology*<sup>*[Le]*</sup> University of Science and Technology of China, Hefei, *China*

*8 th International ITER school*

# **Outline**

#### **1. Introduction**

- $\checkmark$  Experimental observations of the radial electric field formation Theoretical predictoins, and comparison with experimental observations.
- **2. Key diagnostics (***HIBP and CXRS***)**
- **3. Recent experimental results (***JFT-2M***):**
	- $\checkmark$  Spatio-temporal structures of the edge Limit Cycle Oscillation (LCO).
	- $\checkmark$  Driving Mechanisms for E<sub>r</sub> Bifurcation.

### **4. Recent experimental results (***JT-60U***):**

- $\checkmark$  Paradigm of E<sub>r</sub>-shear suppression of turbulence as the mechanism for the edge transport barrier formation with an improved diagnostic.
- $\checkmark$  Complex multi-stage Er transitions having different time-scales.
- $\checkmark$  Turbulence, transport, and the origin of the radial electric field.

## **5. Summary**

# *Experimental* observations of the radial electric field formation after the L-H transition.

# **First discovery of H-mode plasma in old ASDEX tokamak with divertor (Wagner, PRL 1982).**

- Subsequently seen in many medium-sized tokamaks with divertor configuration (e.g. *JFT-2M, PDX/PBX-M, DOUBLET-III/DIII-D, AUG,…*),
- Leading to a standard configuration, including even in the design for large tokamaks (e.g. *JET, JT-60U/SA, and ITER/DEMO*).
- At that time, the *closed* divertor configuration was *believed* to be a necessary condition for the Hmode, *however*, it was reproduced even in limiter and/or open divertor configurations on JFT-2M (Matsumoto, NF 1987).



4

## **Edge localized E<sup>r</sup> structure in H-mode plasma was discovered in DIII-D and JFT-2M, simultaneously.**

 $+\mathcal{V}_{f,Z}$ 

 $\times B_{q}$ 

 $\big)$ 

• According to theoretical prediction, an extensive measurements for the ion density, temperature, and poloidal/toroidal flows at the plasma peripheral region were performed by means of spectroscopic method (CXRS), evaluating the radial electric field;

$$
E_r = \frac{\nabla p_Z / Zen_Z - (\nu_{q,Z} \times B_r)}{\text{Diamagnetic}}
$$

- After the L-H transition, the  $E_r$  and its shear developed in a localized region near the plasma edge.
- Significant reduction in a plasma turbulence level was also seen, although exact causality was not yet clear.



## **Information on the question of causality was also provided by direct biasing Exp. in CCT plasma**

• With biasing, H-mode like transition was demonstrated even in a positive  $E_{r}$ although poor particle confinement would prevent increase of E<sub>r</sub> (negative feedback).

Electric field (positive/negative)

Preventing further increase in positive  $E_r$ 

**Turbulence** (reduced)  $\tilde{n}$   $\Box$   $\nabla$ n Gradient (always negative)

• However, the spontaneous transition to the negative E<sub>r</sub> can be predicted as seen in many devices, because better particle confinement due to the negative  $E_r$  could help further development of negative  $E_r$ (positive feedback).



#### **Direct** measurement with fast temporal resolution was **performed by a HIBP in JFT-2M** 0.1 0.0 7 <u>-----</u>-- $\ddot{\phantom{0}}$ 0. F

- $\ddot{\phantom{0}}$ • **The time-scale of the E<sup>r</sup> formation at the L-H transition**  was found to be 10-100 micro sec (<<tau\_E; time-scale for global energy transport).
- Simultaneously, a significant reduction of turbulence intensity and the ETB formation were seen.
- Finally, it became no doubt that the L-H transition should be the transition of the radial electric field as predicted by a theory.
- If so, what is causality for the Er-bifurcation?



# *Theoretical* study of "poloidal shock" formation, and comparison with experimental observations.

# **Ion orbit loss model** near the plasma boundary was proposed *[Itoh and Itoh, PRL1988]*

- In 1988-89 (>5 years after the  $1<sup>st</sup>$  H-mode discovery in ASDEX), *before experimental observation*, theoretical work predicted that the  $E_r$  might play an important role in the mechanism of the L-H transition.
- Experimental verifications on many devices were also performed [Burrell, PPCF 1992, PoP 1997; Ida, PPCF 1998].
- It is conventionally *believed* that the high confinement regime is achieved when the **E** XB shear is sufficient to stabilize the turbulent fluctuations responsible for anomalously high transport.



*Nevertheless the transition trigger mechanism remains problematic.*

### **Theoretical study in toroidal plasmas had been focused on the poloidal flow formation at high-speed (~***70's***)**

The most interesting point was how **V** was governed when  $E_r$  (=- $\nabla \Phi$ ) existed, according to the *ideal* ohm's law?  $-\nabla\Phi + V \times B = 0$ 

- 1) Poloidal flow can be generated due to the coupling with a poloidal non-uniformity in the radial flux (*i.e. Stringer spin-up*). *[Stringer, PRL1969].*
- 2) Flow structure was categorized by the *non-dimensional parameter (poloidal Mach number, U<sub>pm</sub>)*, and "poloidal shock" can be generated at  $U_{pm} \approx 1$ , depending on the *normalized ion collisionality*. *[Hazeltine, Phys. Fluids1971]*
- 3) In addition to the stationary "mean" flows, oscillating modes (*Zonal flows and/or Geodesic Acoustic Mode*) had been predicted. *[Winsor, Phys. Fluids1968]*



# **Sequence of the physical events in the L-H transition, according to the ion-orbit loss model**

*[K. C. Shaing and E. C. Crume, Jr., Phys. Rev. Lett. 63, 2369 (1989).]*



*A critical* <sup>n</sup>*<sup>i</sup> \* value, depending on the details of devices (e.g. hot ion fraction, impurities, neutrals…). => Indeed,* larger nyu\_i\* (=10–50) was reported [Miura, PRL 1992, Carlstrom, PoP 1996]

- i) Because of plasma heating,  $v_{i,\text{edge}}^*$ decreases.
- ii)  $U_{\text{pm}}$  makes a transition at a critical value of  $v_{i,edge}^*$  and becomes more positive [the corresponding  $E_r$  value becomes more negative with its time-scale of  $O(\nu_{ii}^{-1})$ ].
- iii) When  $\mathsf{V}_{\Theta}$  increases, fluctuations saturate at lower level due to decrease the de-correlation time for turbulent fluctuations, and the L-H transition thereby occurs.

iV) The D<sub> $_{\alpha}$ </sub> intensity drops, and the edge gradient becomes to build in the pedestal …

#### **Rapid changes in the** *ion energy distribution* **at the transition was observed with the time-of-flight neutral measurement** 12



Indeed, the origins that can generate E<sup>r</sup> was predicted by theories (Itoh, PPCF 1996).

*Poisson's relation:*  $\varepsilon_0 \varepsilon_\perp \frac{\sigma}{\partial t} E_{\rm r} = e(\Gamma_{\rm e} - \Gamma_{\rm i})$ 

- The ion loss and the resultant negative E<sub>r</sub> seems to one of key mechanisms in L-H transition.
- The deformation of the energy spectrum after the L-H transition implies the squeezing of banana orbit particles due to the E<sub>r</sub> (Hinton, PRL 1994).
- => important for dependence of the shear-layer on the poloidal gyro-radius.

# **Does turbulence Reynolds Stress suffice for an origin of E<sup>r</sup> (mean field or ZF) ?**

**Model**: Turbulence transfer free-energy to poloidal flow through the turbulent Reynolds Stress (Kim, PRL 2003, Diamond, PRL 1994, PPCF 2005)



This model is a well-known feature of a predator–prey type dynamical system (widely used in transport barrier formation models).

See. Also Talk by Dr. Gary Staebler at Tuesday Dec 15

#### *Recent observations seem to support the P-P* **model, but…causality was still unknown due to lack of** *direct* **E<sup>r</sup> measurements.** See. Also Talk by Dr. J. Cheng at Tuesday Dec 15

*Poloidal turbulence velocity*  **Experiment**: A complex interaction between turbulence driven ExB ZF oscillations (GAMs), the turbulence, and mean flows during the L-H transition (Conway, PRL 2011, Mckee, NF 2009).



(1) Rising turbulence, (2) threshold, (3) GAM, and (4) turbulence suppression



14

rotation varies from co-current to bal. during a torque scan.

# **Key diagnostics (***HIBP and CXRS***)**



### **HIBP and CXRS** are the most powerful tool for the physics study of edge Er formation during L-H transition



*JFT-2M*

# **Recent experimental results** *(JFT-2M)*

**JFT-2M (JAERI Fusion Torus-2M)** 

#### **tokamak**

- $R = 1.3$  m, a = 0.35 m
- $B_t \le 2.2$  T
- $I_p \leq 0.5$  MA

(Medium sized tokamak)

NBI power ≤ 1.6 MW (Balanced)

http://www-jt60.naka.jaea.go.jp/jft2m/ \*Already been shut down in 2004



# A 500 keV Heavy Ion Beam Probe (HIBP) diagnostic on JFT-2M *JFT-2M*

- 1. Singly charged thallium ions with the accelerated energy of up to 500 keV are injected from the top vertical port.
- 2. Doubly charged thallium ions are produced due to ionization by the plasma at the localized region.
- 3. The change in the secondary beam energy due to the plasma detector potential can be evaluated by using parallel plate energy analyzer with split plate detector.
- 4. Density and its fluctuation can be evaluated by using beam current *estimation;*  $I_{HIBP}$ *=* $I_0A_1$  *<i>on*<sub>e</sub> $\Delta$ *lA*<sub>2</sub>≈*n*<sub>e</sub>



#### Limit-Cycle Oscillation (LCO) was seen just before the L-H transition on many devices *Kobayashi, PRL 2013*



Experimental observations (TJ-II, and AUG, DIII-D, EAST, HL-2A, ...).

- However, understanding of the physical mechanism is still not be completed due to lack of *direct*   $\bm{measurements}$  for the  $\bm{\mathsf{E}}_p ...$
- Because of difficulties for simultaneously multi-channeled measurements for determination of ZF (*e.g. Analogy from Doppler reflectometory and/or floating potential measurement by probe*). HIBP is powerful-tool to explain the physical mechanism of the LCO, and hence we revisited this study in JFT-2M with HIBP.

# Theoretical models that could explain LCO.

Model-1: E<sub>r</sub> bifurcation S-I. Itoh, K. Itoh et al., PRL **67**, 2485 (1991)



- LCO can be explained as a transition between two overlapped possible E<sub>r</sub> values, by changing the *non-ambipolar radial flux*.
- Basically, LCO is dynamics among turbulence, mean pressure, and mean electric field.<br>  $\frac{\varepsilon_0 \varepsilon_\perp}{\varepsilon} \frac{\partial}{\partial t} E_r = \frac{\varepsilon_0 \varepsilon_\perp}{\varepsilon} \frac{\partial}{\partial t} F_i^{\text{bc}} - F_i^{\text{bc}} - F_i^{\text{cav}} - F_i^{\text{ac}} - F_i^{\text{NC}} + F_i^{\text{NC}}$

Model-2: Predator-prey model

Kim & Diamond: PRL **90** 185006 (2003)



- Turbulence intensity increases, and that excite ZF.
- 2. Excited ZF suppresses the turbulence. 3. ZF is also decay because the energy source (turbulence) no longer exists.

Electric field excitation process is Reynolds stress driven.  $\varepsilon_{\perp} \frac{\partial}{\partial t} V_{\theta} = -\nabla \langle \tilde{v}_r \tilde{v}_{\theta} \rangle - \nu_{\text{damp}} V_{\theta}$  Mean profile of  $E_r$  and density gradient in both L-mode and LCO phases are found to be similar



#### Micro-scale turbulence in LCO phase was also similar to that in L-mode *JFT-2M*



Spatio-temporal structure of φ and density fluctuations during LCO phase



- Amplitude has homogeneous profile for LCO (f~4.5 kHz)
- Phase difference  $\sim$  0  $\rightarrow$  k<sub>r</sub>~0 (*Not* zonal flows)



- A peak at  $r-a \sim 0$  cm
- Phase inversion at r-a  $\sim$  -1 cm  $\rightarrow$ Small ETB formation and crash during LCO.

#### *JFT-2M* Reynolds stress drives only ~15 m/s of poloidal velocity modulation during LCO



Small role of turbulence in poloidal acceleration is consistent with the observation that the oscillatory flow in LCO is not zonal flows.

#### *Discussion*: Causal Relation among Electric Field *E<sup>r</sup>* , Turbulence *S* and Density gradient *L<sup>n</sup> -1 JFT-2M*



(1) Growth of  $-E_r$  suppresses S and transport, and induces the growth of  $L_n^{-1}$ . (2) Strong *L<sup>n</sup> −1* excites *S* and transport.

(3) Transport leads to decay of  $−E_r$  and following relaxation of  $L_n^{-1}$ .

## **Observed temporal evolution seems to be corresponds to**

**the E<sup>r</sup> bifurcation model** [S.-I. Itoh, K. Itoh., et al., PRL (1991)],

=> Perhaps, the  $E_r$ -bifurcation model may maintain the LCO phases, rather than P-P model.

*JT-60U*

# **Recent experimental results (***JT-60U***)**

**JT-60U (JAERI tokamak 60 m<sup>3</sup> upgrade)**

```
R = 3.4 m, a = 1 m
```
 $B_T \leq 4$  T

 $I_P \leq 3$  MA

(Large sized tokamak)

NBI power ≤ 40 MW

\*Already been shut down in 2008, aiming

for the establishment of JT-60SA



http://www-jt60.naka.jaea.go.jp 26

# **E<sup>r</sup> and its associated shear play a key role for the plasma turbulence and transport**

- L-H transition could be related to the *E<sup>r</sup> bifurcation* at the plasma edge region as *predicted by a theory* [*H. Biglari, Phys. Fluids 1990, S.-I. Itoh, PRL1994*].
- *E<sup>r</sup> -shear stabilization* effects on the transport barrier formation seen in many deices, although exact causality seems to be still unclear [*e.g. P<sub>TH</sub>=f(x), Hydrogen-isotope effects,...*].
- Furthermore, the effect of *E<sub>r</sub>-curvature* on the turbulence suppression is also important for considering the *nonlinear effects* (e.g. radial squeezing or broadening of the turbulent eddies) [*K. Itoh and S.-I. Itoh, PPCF 1996, P. Diamond, PPCF2005*].

*=>> It needs a more detailed experimental and theoretical validation based on a high-resolution measurements with a better S/N.*

# *Shear* and *Curvature* of Electric Field *(Which is more important, and how?)*



[1] H. Biglari, Phys. Fluids B **2** (1990) 1 [2] S.-I. Itoh, et al., Phys. Rev. Lett. **72** (1994) 1200 [3] K. Itoh and S.-I. Itoh, Plasma Phys. Contr. Fusion **38** (1996) 1–49 [4] P. H. Diamond, et al., Plasma Phys. Contr. Fusion **47** (2005) R35-R161

*coefficients should be a remaining issue for both theoretical and experimental work.*

# **Diagnostic**

#### *JT-60U ELMy H-mode plasmas with balanced NBI heating*



#### **Diamagnetic Poloidal Toroidal Velocity Term** • On JT-60U, we measured the radial profiles for the n<sub>i</sub>, T<sub>i</sub>, V<sub>pol</sub>, and V<sub>tor</sub> for the C<sup>6+</sup> using **CXRS** *diagnostic* with fast time resolution (up to 400 Hz) at 59 spatial points (23 tor. and 36 pol. viewing chords).

 $E_r = \nabla p_Z / Zen_Z - (v_{q,Z} \times B_f + v_{f,Z} \times B_q)$ 

• With regard to determining the  $E_r(r)$ , we apply a novel diagnostic for the  $V_{tor}$  having higher spatial resolution, in addition to the conventional one.



29

# **Shot comparison overview**



## **Improved statistics in assessing the temporal behavior of the measurements can be obtained**



# Spatio-temporal structure of ELM perturbation in a variety of momentum input conditions

- Pre-ELM event,  $E_r$  profile exhibits a fairly deep well near the separatrix.
- Immediately after the ELM,  $E<sub>r</sub>$  across the entire region increases, and  $E<sub>r</sub>$  shear starts to reform within a few ms (or less) , resulting in the pedestal gradient reformation.



32

## **Comparison between pre- and post-ELM stages**

- There is variation in  $E_r$  structure, according to the momentum input directions.
- The Max. normalized gradient  $(L_{Ti}^{-1})$ <sup>1</sup>) locations are related to that of  $E_r$ -well bottom and/or  $E_r$ curvature-hill, while…
- E<sub>r</sub>-shear has local peak values out of them.

*The E<sup>r</sup> profiles are fitted by parametrized tanh-like functions;*

$$
E_r(ds) = p(3) + \frac{p(2)}{2} \int_1^1 \tanh\left(\frac{-[ds - p(0)]}{p(1)}\right) \frac{u^2}{p(1)}
$$

$$
+ p(4)\left\{-[ds - p(0) + p(1)]\right\}^2
$$

6 104  $(a) E_r$  $N<sub>m</sub>$ 0 щĻ  $-610<sup>4</sup>$ 6 106 (b)  $E_r$ -shear  $E_r$ ' [ $V/m^2$ ] **Pre-ELM (ctr)** Post-ELM (ctr  $\mathbf 0$ Pre-ELM (co)  $-6106$ (c) E<sub>r</sub>-curvature 1 109  $[*V*/m<sup>3</sup>]$  $-0.1$   $-0.08$   $-0.06$   $-0.04$   $-0.02$  $\mathsf{R}\text{-}\mathsf{R}_{\mathsf{sep}}$  [m]

Locations for Max.  $L_{T_i}^{-1} \equiv -\nabla T_i/T_i$ 

## **Relationship between the Max. normalized temperature gradient and E<sup>r</sup> (and/or Er") locations**



**Separation of E<sup>r</sup> -shear locations for both positive and negative values is about**  $\rho_{\theta i}$  **(or more) =>** So that we could discuss on the effect of curvature in a range of spatial resolution of CXRS diagnostics ( $\sim$  1cm).

**Discussion:** The  $E_r$ -shear stabilization effects ( $\alpha E_r^{\dagger}E_r^{\dagger}$ ) should have a *double hump* structure, but it has never been observed in the pedestal profiles

- The sign in E<sup>r</sup> ' (*i.e. positive or negative shear*) can change when  $E_r$  structure has a local peak value (regardless of the sign in  $E_r$ ).
- As well as experimental observations so far, multi-hump structure (ITB) have never been reproduced. [*Villard, NF 2004*]



## **Scaling relations of the solitary structure in the edge electric field have been developed**

*[K. Itoh, et al., Plasma Phys. Control. Fusion 57 (2015) 075008]*



**Non-linear conductivity:**  $J_r(E_r) = \frac{e n_i \rho_p r}{B R^2} \frac{1}{\sqrt{\pi}} ImZ(X + i\nu_i \omega_t^{-1})(E_r - E_{r,a})$ **(bulk viscosity)** 36

Appendix A. Curvature of radial electric field *[K. Itoh, et al., Plasma Phys. Control. Fusion 57 (2015) 075008]*

- The curvature of Er is focused upon in considering the suppression of microscopic fluctuations via modulational coupling.
- The turbulent Reynolds stress is proportional to the gradient of the radial electric field, when it is induced by the microscopic fluctuations via disparate-scale interaction;  $\langle \hat{v}_r \hat{v}_\theta \rangle \propto \frac{d}{dr} E_r$
- This is natural from symmetry consideration. Thus, the force by this Reynolds stress per unit mass density is proportional to the curvature of the radial electric field. The power absorbed from turbulence by the flow is proportional to the force multiplied by velocity and has a relation;  $V_{\text{ExB}}\frac{d}{dr}\langle \widetilde{v_r}\widetilde{v_{\theta}}\rangle \propto -E_r\frac{d^2}{dr^2}E_r$
- Therefore, the product of electric field and its curvature, XX" in normalized variable, has a key role in the suppression of turbulence via modulational coupling. The same state of the stat

# **An order of ErE<sup>r</sup> " predicted by model is not far from experimental observations**



# **Concentration of turbulence intensity is correlated with ErE<sup>r</sup> "**



# **But**, "*causality"* is still unknown for a transient phenomena

Complex multi-stage E<sub>r</sub> transition during ELM-free (Kamiya, PRL 2010)



1) Mean  $E_r$  can deviate from grad-p term during a "slow" L-H transition with formation of a shallow  $E_r$ -well structure. 2)  $E_r$  jumps to a larger value during EF-phase with a almost developed pedestal, while the *T<sup>i</sup>* gradient does not change much simultaneously. =>> Why?

> **Er transitions** *ExB shearing rate:* **Soft transition**  $\omega_{ExB} =$  $|\omega_{\text{F} \times \text{B}}|$  MHz [T. S. Hahm, PoP1994]

 $T<sub>i</sub>$  pedestal may not necessarily be followed by the change in the E<sup>r</sup> structure, especially for a later H-phase

41



# Replacement of ZF (GAM) to MF *may not* direct cause for the L-H transition



- Across the "fast" transition during ELM-free phase, E<sub>r</sub>bifurcation occurs *at normalized E<sup>r</sup> value ~1* in association *with n=0 fluctuation (GAM).*
- *The exact causality is NOT very well understood*, although the phenomenology of this "replacement" is rich and complex for theoretical studies.

# **Summary and future direction**

- We revisited the studies of *paradigm* of shear suppression of turbulence as the mechanism for the edge transport barrier formation with an improved diagnostic.
	- $-$  Spatiotemporal structures of the LCO and causal relation among  $E_{r}$ , gradient, and turbulence by using a HIBP (JFT-2M ~FY2004).
	- $-$  Relationship among pedestal gradient and E<sub>r</sub> structure (including its shear and curvature) by using a CXRS (JT-60U ~FY2008).
- These new findings shed light on the underlying physics mechanism in the turbulent toroidal plasmas, supporting  $E_r$ bifurcation model partially.
- A more detailed comparison between experiment and model will be left for a future investigation.

# Acknowledgement

- This work was performed under a collaboration between JAEA, NIFS, and Kyushu-university.
- Special thanks goes to Prof. K. Itoh and Prof. S. -I. Itoh for their continuous encouragement.
- Also Drs. T. Ido and T. Kobayashi for their contributions of JFT-2M HIBP measurements.

# References

- 1. F. Wagner, et al. Phys. Rev. Lett. **49**, 1408 (1982).
- 2. ASDEX Team, Nucl. Fusion **29**, 1959 (1989).
- 3. H. Matsumoto, et al., Nucl. Fusion **27**, 1181 (1987).
- 4. S. -I. Itoh, and K. Itoh, Phys. Rev. Lett. **60**, 2276 (1988).
- 5. K. C. Shaing and E. C. Crume, Jr., Phys. Rev. Lett. **63**, 2369 (1989).
- 6. R. j. Groebner, et al., Phys. Rev. Lett. **64**, 3015 (1990).
- 7. K. Ida, et al., Phys. Rev. Lett. **65**, 1364 (1990).
- 8. R. J. Taylor, et al., Phys. Rev. Lett. **63**, 2365 (1989).
- 9. T. Ido, et al., Phys. Rev. Lett. **88**, 055006 (2002).
- 10. T.E. Stringer, Phys. Rev. Lett. **22**, 1770 (1969).
- 11. R.D. Hazeltine, et al., Phys. Fluids **14**, 361 (1971).
- 12. N. Winsor, et al., Phys. Fluids 11, 2448 (1968).
- 13. K. H. Burrell, Plasma Phys. Control. Fusion **34**, 1859 (1992).
- 14. K. H. Burrell, Phys. Plasmas **4**, 1499 (1997).
- 15. K. Ida, Plasma Phys. Control. Fusion **40**, 1429 (1998).
- 16. Y. Miura, et al., Phys. Rev. Lett. **69**, 2216 (1992).
- 17. W. Herrmann and ASDEX Upgrade Team, Phys. Rev. Lett. **75**, 4401 (1995).
- 18. T. N. Carlstrom and R. J. Groebner, Phys. Plasmas **3**, 1867 (1996).
- 19. K. Itoh and S. -I. Itoh, Plasma Phys. Control. Fusion **38,**  1–49 (1996).
- 20. F. L. Hinton, et al., Phys. Rev. Lett. **72**, 1216 (1994).
- 21. P. H. Diamond, et al., Phys. Rev. Lett. **72**, 2565 (1994).
- 22. E. J. Kim and P. H. Diamond, Phys. Rev. Lett. **90**, 185006 (2003).
- 23. P. H. Diamond, et al., Plasma Phys. Control. Fusion **47**, R35–R161 (2005).
- 24. G. D. Conway, et al., Phys. Rev. Lett. **106**, 065001 (2011).
- 25. G.R. McKee, et al., Nucl. Fusion **49**, 115016 (2009).
- 26. T. Kobayashi, et al., Phys. Rev. Lett. **111**, 035002 (2013).
- 27. T. Kobayashi, et al., Nucl. Fusion 54, 073017 (2014).
- 28. K. Kamiya, et al., Phys. Plasmas **21**, 122517 (2014).
- 29. T. S. Hahm, et al., Phys. Plasmas **1**, 2940 (1994)
- 30. T. Tokuzawa, et al., Phys. Plasmas **21**, 055904 (2014).
- 31. K. Kamiya, et al., , Phys. Rev. Lett. **105**, 045004 (2010).