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Stochastic Transport: Basic Physics for ITER

Why do we need to investigate „anomalous“ transport?
„Fluctuation“ induced transport

„Manageable“ stochasticity: ergodic divertors
Experimental signatures: ELM mitigation, toroidal spin-up, heat flux patterns, runaways
Symplectic field line and drift mappings
Characterization of incomplete chaos
Transport along tangles: Heat flux patterns

Estimates from statistical plasma physics
Ab initio stochastic transport theory for small and large Kubo numbers



There is confidence, based on wide-ranging experience in existing fusion devices, that the fusion 
performance of ITER will meet the reference target. 
However, several key operational aspects remain the subject of focused R&D activities which aim to 
ensure the reliable operation of the device at or beyond its design capability. … To develop plasma 
scenarios in which high fusion power production is combined with high confinement and plasma 
pressure, control of heat and particle fluxes, … the fusion community will need to confront a range of 
challenges involving plasma physics understanding …
[D.J. Campbell, this meeting]

Performance projections to ITER rely on the H-mode global energy confinement time scaling, since 
models of local transport … are not yet considered to be sufficiently accurate to replace scaling-based 
extrapolations.
[D.J. Campbell, Phys. Plasmas 8, 2041 (2001)]
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I  is the plasma current (MA), B  is the toroidal field on the plasma geometric axis (in T), P is the total net power crossing t
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n  is the geometric mean electron density (10 m ), M is the atomic mass of the plasma fuel (in AMU), R and a are plasma major and minor horizon
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Need for further basic physics research



Unmagnetized plasma

Magnetized plasma
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Classical transport predictions

Random walk:



Kinetic theory and transport truncations

Advantages:

• classical
• non-relativistic
• close to ideal

Disadvantages:

• geometry
• long mean free paths
• many scales
• linear



Kinetic and transport theories

Liouville equation BBGKY hierarchy
truncation(s) in the kinetic regime
plasma kinetic equation(s)
(Vlasov, Landau-Fokker-Planck, Balescu-Lenard)
averaging over gyromotion
(drift-kinetic, gyro-kinetic equations)
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Linear transport theory

The classical theory for a homogeneous and stationary magnetic field does not apply as a
local theory of transport in a tokamak.
Global geometric characteristics of the confining elements have a strong influence on transport.
Three regimes of collisionality are characteristic of the neoclassical transport theory:
• the banana regime (electronic diffusion increases starting from zero)
• the plateau regime (diffusion almost independent of collisionality)
• the Pfirsch-Schlüter regime (diffusion increases with collisionality)
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 Debye length,  mean free path, L  hydrodynamic length,  Larmor radius
 : Landau type collision term, L  : guiding center transport theory
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Neoclassical (linear) transport coefficients

Cross-coefficients lead to effects which have no classical or Pfirsch-Schlüter counterparts, e.g.

• a parallel electric field produces an inward radial electron flux
• a parallel electric field produces outward electron and ion heat fluxes
• a parallel electric current is produced by an radial ion heat flux, by a radial electron/ion

temperature gradient
• radial pressure gradients may drive (bootstrap) currents
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Problems arise on all scales: 
from  (e.g. L 10 ) [electlaboratory experiments
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Nonlinear transport

Nonlinear gyrokinetics advanced computation
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Very idealized turbulence modelling

3D MHD turbulence, modellings
over finite sections of a tokamak

Numerical tokamak3D PIC Simulationen

Advances in Computational Plasma Physics



Weak Turbulence Theory
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The closure problem, renormalization, and structures

In reality, the resonance is broadened
- terms through all orders are required
- renormalization is required

strong turbulence theory

DIA (Direct Interaction Approximation) closure
EDQNM (Eddy Damped Quasi-Normal Markovian) closure
RMC (Realizable Markovian Closure)
…                                                              Coherent structures
Zonal flows
Blob generation in a turbulent tokamak edge
…

Intermittency



Scaling Laws
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Heuristic methods (small scale fluctuations)
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Mixing length argument (Prandtl)
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small scale turbulence

  mode radial correlation length,  autocorrelation time for turbulent fields
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Self-organization conjecture

Let a system be modeled by a nonlinear partial differential equation, with dissipation,
for the field . The system contains (at least) two quadratic or higher-order
conserved quantities in the absence 

u
of dissipation. One of the conserved quantities,

let us say ( ), decays faster than the other(s), e.g. ( ). The modal cascade in the
quantity  is towards small wave-numbers. Then, the field is expect

A u B u
B ed to reach a 

quasi-stationary state which minimizes  for constant , i. .
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Effective parallel transport in the presence of magnetic fluctuations
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Status of analytical turbulence predictions

Self-consistent models
- are generally very difficult to solve
- are often good for scaling arguments

Heuristic models
- are often ad hoc
- are good for rough interpretations
- are, strictly speaking, not predictive

Non-locality, intermittency, interaction with coherent structures, …
are open problems



„Manageable“ stochasticity

„Old“ paradigm: Stochasticity is 
- mainly caused by plasma instabilities in high-dimensional phase space
- always counter-productive, i.e. enhanced losses 

(micro-instabilities, MHD instabilities, ripple losss, … 
due to thermodynamic forces and currents) 

Nonlinear dynamics: Already a few degrees of freedom system
may become stochastic
(Field-errors due to confinement, heating, shaping and correction coils, 
MHD control coils (RWM) and boundary layer coils, Ergodic divertor coils, …)

„New“ paradigm: Stochastization may have positive aspects
- manageable in some respect
- ELM mitigation, particle exhaust, zonal flows, … 

Tore-Supra, Island divertor in stellarators, DIII-D, Textor, JET
(ASDEX-U, ITER): external sources for magnetic fluctuations



TORE SUPRA



DIII-D configuration



A unique feature of TEXTOR is the Dynamic Ergodic Divertor (DED). 
This device consists of a set of 16 helical coils mounted on the high-field side of the torus inside the vacuum vessel. 
The coils can be connected to produce perturbation fields with the fundamental mode numbers m/n = 12/4, 6/2, and 3/1. 
The coils can be supplied with dc current yielding a static perturbation field, or with ac currents resulting in a rotating field. 
The frequency of the rotating perturbation field can be either low (~ 50 Hz) or high frequency in the range 1 kHz to 10 kHz. 
These frequencies are of the order of the electron diamagnetic drift frequency for TEXTOR discharge conditions. 
The maximum coil current depends on the frequency and can be up to 15 kA.

TEXTOR



36 external coils: 
200-300kA

Blanket 
coils:2*6*(5+5): 
20kA/11turns

Larger 
current,but 
better 
accessibility!

9 mid-ports coils:
150kA/11turns

Becoulet (2007)



DIII-D results

Type-I ELMs are suppressed with resonant magnetic perturbations



Finken et al, PRL 2005

Toroidal spin-up of the plasma in TEXTOR (m/n=3/1)
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Runaway escape rates

slow (appr. 5 MeV)                                      fast (appr. 25-30 MeV)  

same decay for
all DED currents
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different decays for
all DED currents
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[Clebsch Representation]
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Hamiltonian equations of motion

Hamiltonian system



Resonances
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Resonances, Chirikov overlap criterion, butterfly effect
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Symplectic Mapping

The conventional method to determine
the magnetic field topology is
numerical field line tracing,
but symplectic mappings are faster!



Comparison of correct symplectic (left) versus non-symplectic (right) map

Poincaré plots



1 1
ˆ( , ) ( , )k k k kMϑ ψ ϑ ψ+ + =

Characterization of chaotic systems
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Characterization of chaotic systems
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Connection lengths Laminar plots

(Open) chaotic scattering system
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CIII emission spectrum and field line structure

Laminar region: Connection length < Kolmogorov length



Quasi-linear field line diffusion
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Stable and unstable manifolds of 
periodic hyperbolic fixed points

Non-diffusive transport in the presence of hyperbolic fixed points



Experiment: Theory:

q – profile at the edge:

Heat deposition pattern

Laminar plots versus manifold strike points (see also the MASTOC criterion)

Manifolds select outer strike zones



LagrangianLagrangian correlator+Greencorrelator+Green--KuboKubo--formalismformalism: : 
ODE ODE forfor diffusiondiffusion coefficientcoefficient

VelocityVelocity

MonteMonte--CarloCarlo--simulationsimulation

CorrsinDCT, CorrsinCorrsinDCT,DCT,

Ab initio theory: A-Langevin equation model



V-Langevin approach (Balescu and co-workers)
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Radial position of one trajectory

Trapping
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Statistical physics of field line diffusion
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Quasilinear particle diffusion properties
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Rechester-Rosenbluth („oversimplified“)
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Rechester-Rosenbluth coefficient (weakly collisional)
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Kadomtsev-Pogutse coefficient (strongly collisional)
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Comparison (simplified)
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Running diffusion coefficient for K<1 (Langevin theory)
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Finite Larmor radius effects for K<1

Finite Larmor radii
decorrelate the particles
from exponentially
diverging magnetic field lines

Monte Carlo simulations
support the analytical
predictions
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D 0 in the percolation limit K>>1

0

2

2
0 0

2
2

2 2
0

2
2
0

naive (wrong!) argument: :

ˆ, , , exp
2

,

1 ' '' ( ') ( '')

magnetic

trapping randomtrapping random
y y trappingx x

random random
r r

D K

b bb bdx dy rb a z a A
dz B dz B

d x ax
dz B

r dz dz b z b z
B

λ βλ

σ

κ κ
σ

⊥→ ∞

+ ⎧ ⎫+
= = = ∇× ≈ −⎨ ⎬

⎩ ⎭

≈ − =

〈Δ 〉 = 〈 〉∫ ∫

& ∼ ∼
G

( )

2
0

5/ 62

5/3

2 ( )

1with ( ) ( ) exp{ }  since ( ) ( ) cos( )
2

example: Kolmogorov spectrum ( )
1

for 1
0 for 1

( )
(0)

xx

random random
xx xx r x

xx

quasilinear
quasilinear xx

xx
rr

z P
B

P k B z ik z d z b z b z z

CP k
k

D
P

D PD

κ

κ
π

λ

κλκ
κλκ −

= Δ − Δ Δ

≈
⎡ ⎤+
⎣ ⎦

≈
→

∫

&

&

&

∼

�
∼

�

∼

2
0 0

[Kubo number]
a a

B B
K

λ λ λ
β

σ σ σ λ
κλ

⊥

⎧⎪
⎨
⎪⎩

= & &
&

& ∼∼ ∼



DCT (decorrelation trajectory method)
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Finite Larmor radius effects

Reduction due to
decorrelation

Increase due to
detrapping



Large Kubo numbers K>>1

Finite Larmor radii
reduce the trapping effects
(collisionless case)

Collisions
reduce the trapping effects
(collisional cases)



Percolative regime: Comparison with simulations



Parallel (pitch angle) diffusion
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SUMMARY

Closures (beyond Corrsin) in the presence of structures (incomplete chaos) seem to work 
well

We have a quite complete picture of the parameter dependencies of stochastic transport 
coefficients

The qualitative as well as quantitative effects of stochastic transport should be further 
evaluated in dynamical models for ergodic divertors

Manageable stochasticity
• has many applications
• is a test basis for nonlinear plasma transport
• is ITER relevant

Thanks to many contributors
(Sadrilla Abdullaev, Andreas Wingen, Marcus Neuer,
Marcin Jakubowski, …)

Correct citations will appear in the written text!


