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Alcator C-Mod

• High field (B ≤ 8 T), high current (Ip ≤ 2 MA), high energy density 
(Wth/Vol ≤ 0.3 MJ/m3, ‹p› ≤ 2 atm), compact size (R0 = 0.68 m)

• These characteristics greatly exacerbate disruption effects
– Equipped with extensive disruption-relevant diagnostics
– Equipped with two massive gas injection (MGI) systems for 

disruption mitigation studies
• C-Mod permanently shut down last year



Images from a typical 
C-Mod disruption



Video from a typical 
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Disruption halo currents have been 
measured on tokamaks for many years

R. Granetz, et al, Nucl. Fusion 36, 1996



Halo currents have traditionally been 
measured with Rogowski sensors 

and/or current shunts
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Halo currents have traditionally been 
measured with Rogowski sensors 

and/or current shunts

R. Granetz, et al, Nucl. Fusion 36, 1996

Mechanical constraints limited 
measurement resolution in the 
poloidal dimension to ~10 cm
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New SOL diagnostic:
Langmuir rail probes

● 21 flush-mounted Langmuir rail probes give SOL profiles from 
bottom to top of outboard divertor plate with fast time resolution

● Primarily intended to measure I-V characteristics to provide Te(ψ), 
ne(ψ), and Vf(ψ) in the SOL at the outboard divertor plate



New SOL diagnostic:
Langmuir rail probes

● When run in “grounded” mode, the probes appear to the plasma to 
just be part of the divertor plate surface (almost)

● Current flowing in/out of the probes can be measured while in 
grounded mode.
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Spatially-resolved halo currents are 
measured during disruptions

Division between + and – currents slides down the divertor face 
during the current quench



Spatially-resolved halo currents are 
measured during disruptions



Plasma contact point vs time 
compared to +/- halo boundary

Contact point is obtained 
from flux reconstructions 
using fixed filament model

On many disruptions 
there is good 
correspondence 
between contact point 
and +/- halo boundary 
vs time

Ip(t) and Zc(t) are also 
shown
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Resistance of measuring 
circuit  makes a difference

Rail probe #50



Resistance of measuring 
circuit  makes a difference

● Halo current measurements with 3 different circuit resistors have 
been obtained for several of the rail probes, i.e. at several spatial 
positions in the scrape-off layer

– At the lowest resistance, we measure total halo current that 
matches our scaling from 20+ years ago (measured with 
Rogowski sensors)

● This dependence on the circuit resistor allows us to deduce the 
actual SOL resistance (Ω), and perhaps even the SOL resistivity 
profile, if we make the following assumptions:

1) The disruption current quench generates a voltage, Vhalo.  
This voltage drives a current, Ihalo, that is dependent on the 
total resistance of the current path.

2) The Vhalo generated in each disruption in our set of 6 
supposedly identical disruption shots (two shots with each 
resistor value) is reproducible.



Computing SOL halo resistance
Vhaloൌ ݈݄ܴ݈݄ܽܽܫ  ,ሼ20.5݈݄ܽܫ 5.5, 0.5	Ωሽ

2 unknowns: Vhalo and Rhalo
6 disruptions with measurements of Ihalo with 3 different resistors
Method: 

1) Select suitable time range for each shot and find average value of 
Ihalo (2 A, 6 A, 20 A respectively for rail probe #50)

2) Plot Vhalo over a range of Rhalo for each case
3) If curves cross at single point, that is the solution for Vhalo and Rhalo

The 3 lines cross at
Rhalo  1.85 Ω



Summary

● Divertor Langmuir rail probes provide unprecedented poloidally-
resolved measurements of disruption halo currents in the SOL

– Allows detailed comparison of quenching plasma geometry 
with halo current structure

– We have also correlated halo currents with edge q of 
quenching plasma

● Dependence on measurement resistors yields information on SOL 
resistivity and structure

– Should be useful for modeling

– Tells us the Zeff of the scrape-off layer during disruption 
current quenches
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Runaway electrons may severely damage ITER

[1] V.V. Plyusnin, et al. NF 46, 277‐284 (2006).

Relativistic “Runaway” Electrons (REs):
• Energies  10 MeV
• Current  60% of Ip [1]
• In ITER, RE beams of 9 MA!
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Runaway electrons may severely damage ITER

dp
dt ൌ ۴۳  ۴۱

ܖ
ܘ  ۲ۺۯ۴ ,∥ܘ ,ୄܘ ۰

Electric force
O(5‐10) [2]

Radiation reaction
O(3‐15)

Collisional drag O(1)

Relativistic “Runaway” Electrons (REs):
• Energies  10 MeV
• Current  60% of Ip [1]
• In ITER, RE beams of 9 MA!

[1] V.V. Plyusnin, et al. NF 46, 277‐284 (2006).
[2] R.S. Granetz, et al. PoP 21, 072506 (2014).
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Absolutely‐calibrated visible/NIR spectrometers 
( 300‐1000 nm) measure SE on C‐Mod.

SE

C‐Mod ITER
Btor (T) 5.4 (2 – 8) 5.3

nതe (1020 m‐3)  1 (0.2 – 4) 1.0

Top 
View
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Consider an electron with energy E = 40 MeV and pitch = 0.1 in three 
different magnetic fields.

[3] I.M. Pankratov. Plasma Phys. Reports 25, 2 (1999).

[3
]

Does synchrotron emission limit the 
maximum energy of REs?
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Absolutely‐calibrated visible/NIR spectrometers 
measure synchrotron emission on C‐Mod

2.7 T 7.8 T1160824024

1160824026

1160902016

5.4 T

• RE densities are difficult to reproduce, so we are not interested in the 
absolute amplitude. 

• Instead, we are interested in the spectral shape.
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2.7 T 7.8 T1160824024

1160824026

1160902016

5.4 T

• Select one time‐slice near maximum emission during steady plasma 
parameters.

• Take the ratio of two spectra and normalize.

Absolutely‐calibrated visible/NIR spectrometers 
measure synchrotron emission on C‐Mod
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*Relative to the reference spectra

Positive slope
• More brightness at longer wavelengths
• Shifted toward the red

Negative slope
• More brightness at shorter 
wavelengths

• Shifted toward the blue

Compare synchrotron emission at three magnetic fields



[3] I.M. Pankratov. Plasma Phys. Reports 25, 2 (1999).
[4] J.H. Yu, et al. PoP 20, 042133 (2013).
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Compare synchrotron emission at three magnetic fields

Mono‐energetic/pitch [3,4]

5.4 T
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Compare synchrotron emission at three magnetic fields

Mono‐energetic/pitch [3,4]

[3] I.M. Pankratov. Plasma Phys. Reports 25, 2 (1999).
[4] J.H. Yu, et al. PoP 20, 042133 (2013).

E = 28 MeV
pitch = 0.1
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E = 28 MeV
pitch = 0.1

Mono‐energetic/pitch [3,4]

Compare synchrotron emission at three magnetic fields

[3] I.M. Pankratov. Plasma Phys. Reports 25, 2 (1999).
[4] J.H. Yu, et al. PoP 20, 042133 (2013).
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[3
]

38

B = 5.4 T, pitch = 
0.1

[3] I.M. Pankratov. Plasma Phys. Reports 25, 2 (1999).

Decreasing RE energy decreases synchrotron emission 
amplitude and shifts toward the red

 To keep the brightness the same, an increase in magnetic field    
requires a decrease in energy.
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Synchrotron emission limits the mono‐energetic RE energy

3 November 2016



• Per particle, synchrotron emission increases and shifts toward shorter 
wavelengths with increasing magnetic field and energy (for fixed pitch).

• Measured synchrotron brightnesses at three magnetic fields (2.7 T, 5.4 
T, and 7.8 T) have similar spectral shapes.

• Assuming a mono‐energetic RE beam at a fixed pitch, an increase in 
synchrotron emission per particle (from an increase in magnetic field) 
reduces the energy.

 Synchrotron emission is limiting the energy of REs.
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Summary of Results
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Preliminary results from synthetic diagnostic 
SOFT [5] show good agreement with experiment

[5] Correspondence with M. Hoppe and 
the Chalmers Plasma Physics Group 

(2016).
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Developing Disruption Warning 
Algorithms Using Large Databases on 

Alcator C-Mod, EAST, and DIII-D

R. Granetz, C. Rea, A. Tinguely

MIT Plasma Science and Fusion Center, Cambridge, MA, US 



Why Large Databases Are Useful for 
Developing Disruption Warning Algorithms

We want to answer the following types of questions:
• Which parameters are correlated with the approach of a 

disruption?  What are their threshold levels vs number of missed 
disruptions and number of false positives?

• What is the warning time vs threshold level?
• Do the details depend on whether the disruption occurs during 

flattop, rampdown, or rampup?
• Are there combinations of parameters that are useful?
• Are the same parameters useful on different tokamaks?

Additionally, we desire a disruption warning algorithm that 
works in near real-time, embedded in the plasma control 
system
 Therefore, the only parameters in our databases are those that, 

in principle, can be available in near real-time.



The Databases We Are Constructing

We have created databases consisting of candidate 
parameters sampled at many times during disruptive and
non-disruptive shots on several tokamaks:

C-Mod 2015 campaign (~2000 shots; > 165,000 time slices)
EAST 2015 campaign (~3000 shots;  > 117,000 time slices)
DIII-D 2015 campaign (~2100 shots; > 500,000 time slices)

– Non-uniform time slice sampling:
o Flattop, rampdown, rampup can have different sampling rates
o Additional slices at much higher sampling frequency for a fixed 

period of time before a disruption

– SQL, using standard queries with MATLAB, IDL, Python, 
– Potentially could be processed using “machine learning” 

algorithms such as deep neural networks, support vector 
machines(SVM), random forests, …



Comparisons of several possible disruption 
warning indicators on C-Mod and EAST

In this poster we will compare 3 plasma parameters that 
are commonly associated with impending disruptions:

• Loop voltage – Increasing impurity content and/or 
MHD instabilities can increase plasma resistivity, 
causing an increase in Vloop, and possibly leading to a 
disruption

• Prad fraction – An increase in Prad/Pinput may provide 
an early warning of an impending thermal collapse 
due to impurity radiation

• Ip error – Difference between the actual plasma 
current and the pre-programmed plasma current.  
This can be due to an increase in resistivity caused 
by impurities or MHD, possibly leading to a disruption



Important details:

• All data in the following plots are taken from the flattop
portion of the discharge.  (Our databases have data 
from rampup and rampdown as well, but here we 
concentrate on the flattop only.)

• All disruptions in the following plots occur during flattop
• Both disruptive and non-disruptive discharges are 

analyzed.
− Disruptive discharges give prediction success rate
− Non-disruptive discharges give false positive rate

• It is absolutely imperative to avoid processing 
signals with non-causal filtering. This can introduce 
post-disruption effects into pre-disruption data.  
Particular care must be taken with Prad and Vloop



Parameter: Loop voltage
Tokamak: EAST

DisruptionsNon-disruptions

Disrupt 
time

A significant number of loop voltage values increase 
during the ~100 ms before disruptions occur



Parameter: Loop voltage
Tokamak: EAST

DisruptionsNon-disruptions

If we declare: (Vloop ≥ 1.5 or Vloop ≤ -0.7) is threshold for disrupt:
47.8% of disruptions are predicted with ≥ 30 ms warning time
40.7% false positive rate 



Parameter: Loop voltage
Tokamak: C-Mod

DisruptionsNon-disruptions

Disrupt 
time

Loop voltage values do not increase until  5 ms before 
disruptions occur



Parameter: Loop voltage
Tokamak: C-Mod

DisruptionsNon-disruptions

If we declare: (Vloop ≥ 2.9 or Vloop ≤ -0.7) is threshold for disrupt:
9.2% of disruptions are predicted with ≥ 10 ms warning time
0.6% false positive rate 



Parameter: Prad fraction
Tokamak: EAST

DisruptionsNon-disruptions

Disrupt 
time

A significant number of Prad fraction values increase 
during the ~150 ms before disruptions occur



Parameter: Prad fraction
Tokamak: EAST

DisruptionsNon-disruptions

If we declare: Prad fraction ≥ 0.35 is threshold for disrupt:
24.9% of disruptions are predicted with ≥ 30 ms warning time
21.0% false positive rate 



Parameter: Prad fraction
Tokamak: C-Mod

DisruptionsNon-disruptions

Disrupt 
time

Prad fraction values do not increase noticeably 
before disruptions occur



Parameter: Prad fraction
Tokamak: C-Mod

DisruptionsNon-disruptions

If we declare: Prad fraction ≥ 1.4 is threshold for disrupt:
4.0% of disruptions are predicted with ≥ 10 ms warning time
1.4% false positive rate 



Parameter: Ip error
Tokamak: EAST

DisruptionsNon-disruptions

Disrupt 
time

A significant number of Ip error values increase in 
magnitude during the ~100 ms before disruptions occur



Parameter: Ip error
Tokamak: EAST

DisruptionsNon-disruptions

If we declare: Ip error ≤ -30 kA is threshold for disrupt:
34.2% of disruptions are predicted with ≥ 30 ms warning time
30.9% false positive rate 



Parameter: Ip error
Tokamak: C-Mod

DisruptionsNon-disruptions

Disrupt 
time

Ip error values do not increase significantly until 
just ~10 ms before disruptions occur



Parameter: Ip error
Tokamak: C-Mod

DisruptionsNon-disruptions

If we declare: Ip error ≤ -60 kA is threshold for disrupt:
15.7% of disruptions are predicted with ≥ 10 ms warning time
10.9% false positive rate 



Summary and Conclusions
We have examined several disruption parameters using our 
C-Mod and EAST disruption warning databases.  More 
relevant parameters are still being added (locked mode 
signals, etc.)

– So far, our studies show that these parameters provide 
a useful warning of impending disruptions on EAST, 
with  30 ms warning time

– But these parameters do a poor job of predicting 
disruptions on Alcator C-Mod with useful warning time

The faster timescales could be partly due to small size.  But 
C-Mod “control room” experience is that most disruptions 
are caused by small moly injections, with no warning signs.
Could this be a general issue with high energy density, 
high-Z tokamaks, including ITER?



Application of machine 
learning techniques to 
our DIII-D disruption 

warning database

C. Rea, R. Granetz

MIT Plasma Science and Fusion Center
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cross-
validation 

dataset

o uncover hidden 
regularities as clusters 
or patterns, or detect 
anomalies in the data

 learning is not only a question of 
remembering but also of generalization
to unseen cases

the two main subfields of Machine Learning are 
supervised and unsupervised learning

unsupervised 
learning

unsupervised 
learning

supervised 
learning

supervised 
learning

o an a-priori label is 
associated with each 
data sample

discrete
label

real-valued 
label

classification 
problem

regression 
problem

train 
dataset

test 
dataset

C Rea/IIS2017/March 2017

multi-
class

binary



64

to determine disruption events with sufficient warning time 
it is possible to choose among a plethora of ML algorithms

• statistical analysis of disruptions has already been addressed 
in past years

– P.C. de Vries et al.  Nuclear Fusion 49 (2009) 055011
– S.P. Gerhardt et al. Nuclear Fusion 53 (2013) 063021

• Machine Learning “black box” approach, through both 
supervised and unsupervised algorithms, was developed 
mainly at JET and also studied in real-time environment

– Artificial Neural Network - B. Cannas et al. Nuclear Fusion 44 (2004) 68-76 
– Support Vector Machine and Novelty Detection - B. Cannas et al. Fusion Engineering 

and Design 82 (2007) 1124-1130 
– Support Vector Machine - G.A. Rattá et al. Nuclear Fusion 50 (2010) 025005
– APODIS, multi-tiered Support Vector Machine - J. Vega et al. Fusion Engineering and 

Design 88 (2013)
– Manifolds and Generative Topographic Maps - B. Cannas et al. Nuclear Fusion 57 

(2013) 093023 
– Generative Topographic Maps, APODIS and conformal predictors - B. Cannas et al. 

Plasma Physics and Controlled Fusion 57 (2015) 125003 

C Rea / IIS2017 / March 2017
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• to obtain a warning time related to the probability of disruption 
occurrence, a methodology is first developed to solve the 
binary classification problem: disrupted/non-disrupted

• the multi-class classification problem is also studied, where the 
time dependency is included through the definition of class 
labels on the basis of the elapsed time before the disruption
(i.e. “far from a disruption”, “within 100 ms of disruption”, 
etcetera)

• Random Forests are large collection of decision trees

*L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001

as first approach, we implement a Random Forests* algorithm to 
classify our dataset and gain further insights on its structure

C Rea / IIS2017 / March 2017
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graphical depiction of a single tree in a Random Forests

max_depth = 3

max_depth = 5

fully-grown tree
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graphical depiction of leaf (i.e. final) nodes in a tree
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• class labels: (0,1) have no time dependency
• mean accuracy of the model: ~ 0.95
• 500 estimators (trees)

feature importance for Random Forests algorithm applied to 
the binary classification problem: disrupted/non-disrupted

ߪ
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why q95 and n=1 amplitude have such different 
discriminative power and relative importance

blue: safe discharges, time slices during flattop 
red: disruptions during flattop

blue: safe discharges, time slices during flattop 
red: disruptions during flattop

[ T ]

• q95 probability distributions show major differences between the 
disrupted and non-disrupted discharge data

• while for the n=1 amplitude data, disregarding the peak at zero, it’s 
true that the difference between disruptions and safe discharges 
does exist but it is very slim in terms of probability density.

C.Rea / IlS2017 / March 2017
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feature importance for Random Forests algorithm applied to 
the multi-class classification problem with the induced time 
dependency
• definitions of class labels (0,1,2) are given according to the elapsed time 

before the disruption
• dataset consists of all disrupted discharges (171 shots)
• mean accuracy worsens: ~ 0.85
• 500 estimators (trees)
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confusion matrix is used as an accuracy metrics to assess 
the model’s capability to discriminate between class labels

multi-class classificationbinary classification

“far from disr” : time_until_disrupt > 1s
“in-between”: 0.1s < time_until_disrupt < 1s
“close to disr” : time_until_disrupt < 0.1s

the dataset is composed of 59% 
non-disruptive time slices and 41% 
disruptive time slices

the dataset is composed of only
disrupted time slices
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confusion matrices for multi-class classification: 
comparison between different datasets

“far from disr” : time_until_disrupt > 1s
“in-between”: 0.1s < time_until_disrupt < 1s
“close to disr” : time_until_disrupt < 0.1s

the dataset is composed of 
disruptive time slices; 
non-disruptive time slices populate 
the far from disr category

the dataset is composed of only
disrupted time slices

multi-class classification


