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J x B = c    p

eddies, few gyroradii

Magnetic Confinement

closed magnetic flux surfaces

--> confined plasma

however . . .   turbulence --> losses

∆

MHD equilibrium

strong magnetic field, small gyroradius
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Low Frequency Drift Motion

gyration

magnetic field

sense of

general

few moments: ‘‘gyrofluid’’

for ions

magnetic field

drift of
gyrocenters

low frequencies

ω << Ω

(v  << v  )||⊥

v-space details: ‘‘gyrokinetic’’
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Low Pressure (Beta) Dynamics

k  v|| A

(p + 4    BB) ~ 0π

k  << k

p << B /8
2 π k  v

(parallel to B)

A⊥ω <<

||

vortices/filaments

magnetic field

--> strict perpendicular force balance

‘‘flute mode’’

low frequencieslow ‘‘beta’’

--> electromagnetic parallel dynamics

pressure disturbance p

⊥

magnetic disturbance B

ω ∼

B
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(x,y)

(x,y)
∼

phase shift
−−> transport

computations: align coordinates to magnetic field (sheared, curved)
(only one contravariant component of B is nonvanishing)
(nonorthogonal, takes advantage of slowly varying B)

(S Cowley et al Phys Fluids B 1991, B Scott Phys Plasmas 1998, 2001)
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EuEEu  −> v

ρk    ~ 1k    << 1ρ

φ

ExB Drift at Finite Gyroradius
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p

∆

phase shift --> net transport down gradient
--> free energy drive

Phase Shifts and Transport

p and phi in phase
--> no net transport

phase shift --> net transport



equation of motion for electrons parallel to B

adiabatic (fluid compression) couplingAlfven (MHD) coupling

controls possible phase shifts

a ‘‘two fluid’’ effect

static balance of gradients  -->  ‘‘adiabatic electrons’’

general: response of currents to static imbalance
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Role of Parallel Forces on Electrons
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(B Scott Plasma Phys Contr Fusion 1997)

(M Wakatani A Hasegawa Phys Fluids 1984)

Drift (Alfven) Wave Dynamics

x
B

y
p~

ion current

~φ

~p

electron current

sound waves

driftp

∆

-->  structure drifts

-->  

-->  φ~

φ~

coupled to p through Alfven dynamics

continually excites p in the gradient~

~



(B Scott Plasma Phys Contr Fusion 2003)

high resolution, long runs (> 1000 "gyro−Bohm" times) are necessary

for equal temperatures, space scale range includes ion gyroradius

slowest time scale reflect flow/equilibrium component
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broad range of both time and space scales −− to ion gyroradius

Scales of Motion



Numerical Methods

• nonlinearities have the form of brackets

∂f

∂t
+ [ψ, f ]xy + · · · = 0 with [ψ, f ]xy =

∂ψ

∂x

∂f

∂y
− ∂f

∂x

∂ψ

∂y

• spatial discretisation:
centred-diff for linear terms, Arakawa (J Comput Phys 1966) scheme for brackets
◦ basic properties of bracket satisfied to machine accuracy

[φ, f ]xy =
1

3

(
J++ + J+× + J×+

)

• temporal discretisation:
“stiffly stable” form (Karniadakis et al J Comput Phys 1991), stable for waves
◦ both sides expanded =⇒ all mixed terms in Taylor expansion present
◦ one evaluation per time step
◦ tested on turbulence and coherent vortices (Naulin and Nielsen, SIAM J Math 2003)

∂f

∂t
= S with

3∑

j=1

αj
f0 − fj

∆t
=

3∑

j=1

βj Sj



(details 1: origin of brackets)

• basic structure of gyrocenter continuity equation (similar to gyrokinetic equation)

∂n

∂t
+∇φ · cF

B2
· ∇n+B∇‖

nu‖
B

+∇ logB2 · cF
B2
·
(
n∇φ+

1

e
∇p
)

= 0

• define bracket

∇n · cB
B2
×∇φ = ∇φ · cF

B2
· ∇n ≡ [φ, n] using F = ε ·B

• local approximations: use L⊥k⊥ � 1 ordering
◦ linearise everywhere except in bracket-structure quadratic nonlinearities

∂n

∂t
+ [φ, n] + n0B∇‖

u‖
B

+

[
logB2,

(
n0φ+

T0

e
n+

n0

e
T

)]
= 0

• adjust brackets to be divergence-free structures (preserves energetics)



(details 2: each structure)

• brackets (see geometry, below), simplified form
◦ do the quantity in parentheses with Arakawa’s discretisation

[φ, f ] =
c

B0

1

r

(
∂φ

∂r

∂f

∂θ
− ∂φ

∂θ

∂f

∂r

)

• parallel derivatives (see geometry, below), simplified form (linear term shown)
◦ do these via centred differences (or 4th order if you wish)

B∇‖f =
B0

2πR0

(
∂f

∂ζ
+

1

q

∂f

∂θ

)

• dissipation terms are simple, e.g.,

1

c

∂A‖
∂t

= · · · − η‖J‖ or
1

2

∂T‖
∂t

= · · · − ν

3η0

(
T‖ − T⊥

)



Representation of Tokamak Geometry

• flux coordinates with nested flux surfaces (S Hamada, 1958, Nucl Fusion 1962)
◦ surface label minor radius r, poloidal/toroidal angles θ, ζ periodic on unit torus

B · ∇r = 0 B · ∇θ = B0/2πqR0 B · ∇ζ = B0/2πR0

• take advantage of k‖ � k⊥ and align the coordinates to B — note q is q(r)

x = r/a y = qθ − ζ s = θ

• this ensures that only one contravariant component is nonzero (here: Bs)
◦ coarse resolution is allowed in that direction (dimension)
◦ very high resolution, necessary for both k⊥ dimensions, becomes feasible

• typically MHD ↔ turbulence crosstalk requires 500 or more toroidal modes

• main caveat: global consistency in θ boundary conditions

f(x, y + q, s+ 1) = f(x, y, s) ensures k‖qR = m− nq



More Work on the Coordinates

• main issue is deformation: large values of gxy → extra numerical dissipation

• solution: different coordinate system on each “drift plane” s = sk = constant

x = r/a yk = q(θ − sk)− ζ −∆αk s = θ

• non-zero ∇r · ∇θ and ∇r · ∇ζ, choose

αk = qsk + ∆α = αk(r)
∂

∂r
∆α = (grr)−1

(
qgrθ − grζ

)

• this makes gxyk = 0 at s = sk
◦ retaining global field aligning, local orthogonality, exactly

• this “shifted metric” technique is required to treat anything with “slab character”
◦ e.g., shear Alfvén turbulence component, global MHD such as tearing

• carry angle periodicity through, exactly, to obtain angle boundary conditions



(details 1: boundary conditions on angles)
• coordinates defined as

x = r/a yk = q(θ − sk)− ζ −∆αk s = θ

• already satisfy toroidal periodicity
◦ changing yk holding x, s constant is same as changing ζ holding r, θ constant

f(r, θ, ζ + 1) = f(r, θ, ζ) becomes f(x, yk − 1, s) = f(x, yk, s)

• now must satisfy poloidal periodicity
◦ changing θ holding r, ζ constant changes both yk and s

f(r, θ + 1, ζ) = f(r, θ, ζ) becomes f(x, yk + q, s+ 1) = f(x, yk, s)

• now put each plane on its own coordinate system
◦ N drift planes: sk+N = sk + 1

f(x, yk + q, s+ 1) = f(x, yk, s) becomes f(x, yk+N , sk+N ) = f(x, yk, sk)



(details 2: parallel derivatives)

• special attention to unperturbed ∇‖

B∇‖f =
∂f

∂s

• finite difference across drift planes, each on its own coordinate system
◦ (equidistant: sk+1 − sk = hs)

2hs
∂f

∂s

∣∣∣∣
s=sk

= f(x, yk, sk+1)− f(x, yk, sk−1)

= f(x, yk+1 −∆+, sk+1)− f(x, yk−1 −∆−, sk−1)

• shifts come from coordinate definition yk = y − αk

∆± = αk±1 − αk



(details 3: brackets)

• transform using tensor rules (simplified form with ∆α = 0)
◦ in general the only simplification is evaluation at s = sk

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
=

1

a

∂

∂x
+
∂q

∂r
(s− sk)

∂

∂y

∂

∂θ
=
∂y

∂θ

∂

∂y
+
∂s

∂θ

∂

∂s
= q

∂

∂y
+

∂

∂s

• fluxtube ordering: k‖ � k⊥ implies ∂/∂s� ∂/∂x or ∂/∂y

1

r
becomes

1

a
hence [φ, f ] =

c

B0a2

(
∂φ

∂x

∂f

∂y
− ∂φ

∂y

∂f

∂x

)

• caveat on the curvature: ∂/∂y = 0 for logB2 hence keep ∂/∂s for it

−[logB2, f ]→ K(f) =
c

B0a

2

R0

[
(cos s+ gxyk sin s)

∂f

∂y
+ sin s

∂f

∂x

]



(details 4: Arakawa’s discretisation for brackets)

• form various versions of “Jacobian” operation (straight, rotational, diagonal)
◦ evaluated at grid node 00 with + or − neighbours in xy plane

J++ =
1

4h2
[(φ+0 − φ−0)(f0+ − f0−)− (φ0+ − φ0−)(f+0 − f−0)]

J+× =
1

4h2
[φ+0(f++−f+−)−φ−0(f−+−f−−)−φ0+(f++−f−+) +φ0−(f+−−f−−)]

J×+ =
1

4h2
[φ++(f0+ − f+0)− φ−−(f−0 − f0−)− φ−+(f0+ − f−0) + φ+−(f+0 − f0−)]

J×× =
1

8h2
[(φ++ − φ−−)(f−+ − f+−)− (φ−+ − φ+−)(f++ − f−−)]

• demand antisymmetry of bracket, conservation of energy and enstrophy, find

[φ, f ]xy =
1

3

(
J++ + J+× + J×+

)



(details 5: Karniadakis’s time step)

• a variant on the Adams/Bashforth theme, expand both sides 3 timesteps deep
◦ this recovers all mixed terms in time/space Taylor expansion

∂f

∂t
= S with

3∑

j=1

αj
f0 − fj

∆t
=

3∑

j=1

βj Sj

• coefficients for order 3:

α1,2,3 = 3 − 3/2 1/3 β1,2,3 = 3 − 3 1

• incorporation of an implicit dissipation piece L is straightforward
◦ watch out for the factor of 6/11 (inverse sum over the αj)
◦ NB: always avoid implicit techniques with wave dynamics

3∑

j=1

αj
f0 − fj

∆t
+ L(f0) =

3∑

j=1

βj Sj



Basic Situation in the Tokamak Edge

• edge time scales for electrons
◦ collisions νe
◦ thermal transit Ve/qR
◦ Alfvén transit vA/qR
◦ turbulence 10−2 to 1 times cs/LT

• edge time scales for ions
◦ collisions νi
◦ thermal transit cs/qR

electron time scales comparable to turbulence

ion time scales much slower

β̂ =

(
cs/L⊥
vA/qR

)2

µ̂ =

(
cs/L⊥
Ve/qR

)2

C =
0.51νe
cs/L⊥

µ̂ all > 1



basic feature of any instability −− transition to  turbulence

linear drive (n) −−> linear growth

moment of saturation −− growth rate (T) drops to zero

saturation maintained −− nonlinear transfer to subgrid scale dissipation (E)

transport (Q) overshoots, finds saturated balance
(B Scott Phys Plasmas 6/2005)

Nonlinear Saturation



basic statistical character of three wave energy transfer

all activity near the k’ = k line −−> cascade character

ExB energy is inverse, while other quantities are direct (to higher k)

transfer between wavenumber magnitudes −− from k’ to k

dominant transfer is through the thermal free energy (n), others also active

(S Camargo et al Phys Plasmas 1995, 1996)

Nonlinear Cascade in Turbulence



amplitude threshold −−> linear stability

vorticity nonlinearity −−> damped eigenmodes destabilise each other

role of pressure advection nonlinearity −−> saturation

edge turbulence −−> washes out microinstabilities in toroidal magnetic field

(B Scott Phys Rev Lett 1990, Phys Fluids B 1992, New J Phys 2002)

basic feature of drift wave turbulence (edge turbulence test case)

Nonlinear Instability



between modes within ExB energy −− nonlinear advection

pathways: over parallel dynamics or toroidal compression

free energy: source in pressure equation, transfer in to vorticity equation

part of energy theorem governed by vorticity equation

polarisation parallelcurrents: diamagnetic

direct, in−context measurement of physical mechanism supporting turbulence

Fourier mode k

(B Scott Phys Plasmas 2000)

vE =.+
.

+ .∆ )k

Ω e  i

∆

−k || J||
_c

B2Bx

∆

p

vorticity     = (n  − n  ) e

Energy Transfer

∆

Ω +(−φ FLRΩ



basic feature of any instability −− transition to  turbulence

linear drive (n) −−> linear growth

moment of saturation −− growth rate (T) drops to zero

saturation maintained −− nonlinear transfer to subgrid scale dissipation (E)

transport (Q) overshoots, finds saturated balance
(B Scott Phys Plasmas 6/2005)

Nonlinear Saturation



linear interchange mode −− balance between diamagnetic/parallel currents

turbulence −− emergence of nonlinear ExB vorticity advection

developed turbulence −− balance between polarisation/parallel currents

basic mechanism supporting eddies in turbulence differs from linear instability

turbulence imposes its own mode structure on dynamics

(B Scott Plasma Phys Contr Fusion 2003)

Vorticity Energetics −− Transition to Turbulence



low k high k

sink

sink

thermal gradient

nonlinear

nonlinear

entire
spectrum
a unit

DW: direction for J
determined by NL

(B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997)

(S Camargo et al Phys Plasmas 1995 and 1996)

J
~

J
~

φ
~

φ
~

p~p~

Energy Transfer:  electromagnetic turbulence
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electromagnetic cases — notes

• nominal value of beta

β̂ =
4πpe
B2

(
qR

L⊥

)2

= 1.75

• introduction of “flutter” effects

∇‖ = bs
∂

∂s
− β̂[A‖, ] −∇2

⊥A‖ = J‖ ↔ ∇‖(pe − φ)

• as β̂ rises from zero, transport is relatively insensitive, then rises
◦ linearly weak interchange/ballooning modes are available at low-ky
◦ these are driven via nonlinear cascade, through turbulence vorticity

• at high-ky turbulence vorticity overcomes linear instabilities
◦ rough rule of thumb: ω∗ > γI (diamag freq > MHD interchange growth rate)
◦ edge conditions: kyρs > 2L⊥/R since ρs/L⊥ >∼L⊥/R



Basic Edge Transport Scaling
mid-size tokamak L-mode cases, local geometry, 64× 256ρs × 2πqR domain

• synergy: all three transport channels vary together (squares: nominal case)

• beta turnup due to long wavelength nonlinear transfer (dashes: 2× resolution)

• in both cases sensitivity is due to nonadiabatic electrons



V’

Γ

eddies V(x)

Suppression of Turbulence by Flows
(Biglari Diamond Terry, Phys Fl B 1991)

eddies tilted into energy−losing relationship to flow vorticity

−−> same process as in self generation



Sensitivity to Externally Imposed ExB Shear
standard L-mode cases with ITG gradients: LT = 0.5Ln

• squares give value at zero shear
◦ red/blue/green lines give constant/cos/sech2 profiles for applied vorticity

• rolloff is slow, no steeper than Q ∼ (V ′)−1

• max suppression is only about a factor of 4



Main Points — Transport Scaling

• trends follow nonlinear, not linear, physics

• effects of ion grad-T must be kept...
◦ accounts for nonlinearly driven longer wavelengths
◦ prevents cutoff of transport towards higher T and grad-T

• trend with either grad-T or beta always monotonically upward

• shear flow suppression too weak to overcome beta scaling

no L-to-H transition in fully developed turbulence in local models



θφ <p sin    ><    >

−−> transfer pathway, equipartition

zonal flow exchanges conservatively with pressure sideband

divergence at bottom

(Winsor et al Phys Fl 1968, Hahm et al Plasma Phys Contr Fusion 2002, 2004)

Zonal Flow, Toroidal Compression

compression at top pressure sidebandzonal flow



transport

φ∼

<φ>

<u cos s>
ion dissipation

transport

<p sin s>

resistivity

<    sin s>

P−S current

<J cos s>

adiabatic compression

diamagnetic compression

φ

<p>

(B Scott Phys Lett A 2003, New J Phys 2005)

effects
2−fluid

Reynolds
stress

MHD
effects

Energy Transfer:  flows and currents



eddy Reynolds stress −−> energy transfer from turbulence to flows

turbulence moderately weakened but not suppressed 

toroidal compression −−> energy loss channel to pressure, turbulence

entire system in self regulated statistical equilibrium (turb, flows, mag eq)

turbulence regulated by flows, regulated by toroidal compression

(B Scott Phys Lett A 2003, New J Phys 2005)

Coupling to Zonal Flows



Including the Self-consistent Profile Evolution

• allow the turbulence advection (mixing) to evolve the profile
◦ here, “profile” is the same as “zonal component”

• now the profile is part of the dependent variable
◦ it is acted upon by magnetic curvature (toroidal compressibility of drifts)

• hence the “neoclassical equilibrium” is necessarily a part of the evolution
◦ flow balance: zonal flows, geodesic curvature coupling,

nonlinear transfer to turbulence → zonal flow saturation
◦ current balance: Pfirsch-Schlüter current, Shafranov shift

∂

∂x

〈
A‖
〉
→ δ

1

q

〈
A‖ cos s

〉
→ Shafranov shift

all of the above must now be carried self consistently



current stays in moment variables, magnetic field in coordinate metric

Ampere’s Law −−> ‘‘Pfirsch−Schlueter magnetic field’’ −−> toroidal shift

P−S current equilibrates toroidal diamagnetic compression

Schlueter
Pfirsch−

current

B

∆

current
diamagnetic

toroidal equilibration current <−−> Shafranov shift

Incorporation of Magnetic Equilibrium



turbulence and transport
(profile + disturbances)

self consistent magn eq, geometry

L−Mode Base Case (ASDEX Upgrade generic)
correct mass ratio, gyroradius
closed/open flux surfaces, separatrix topology

(B Scott Contrib Plasma Phys 2006)

Global Electromagnetic Gyrofluid (GEM):

(Pf−Sch currents −−> Shafranov shift)



(thickness expanded by 3.3)

scrape−off
layer (SOL)

edge

(LCFS)
flux surface
last closed

major/minor radii

a

R
symmetry axis

A Typical Burst Event



Scale Separation

• turbulence vorticity scales with cs/L⊥, velocity with cs(ρs/L⊥)

• transport flux scales with cs(ρs/L⊥)2, diffusivity with csρ
2
s/L⊥

• this is called “gyro-Bohm” and arises in general from ρs � L⊥

• edge layer confinement time scales with L2
⊥/D or (L⊥/cs)× (L⊥/ρs)2

• for edge (not SOL) turbulence this is about 1 msec with L⊥/ρs >∼ 50

it is vital to get this correct in a computation
since the turbulence/equilibrium crosstalk depends on it



Scale Separation Look and Feel

electromagnetic core cases with a/ρs of 50, 100, and 200, non-axisymmetric part

• if you can see the eddies on a global plot they’re too large!

• in the edge you have L⊥/ρs < 100 but 2πa/q > 103ρs



Ion Flow Sideband Divergences — Small Case

• flow divergence pieces do not balance



Ion Flow Sideband Divergences — Medium Case

• flow divergence pieces almost balance



Ion Flow Sideband Divergences — Nominal Case

• flow divergence pieces balance closely



Scale Separation and the Profile Decay Rate

• profile (zonal component ion thermal energy) decay for the three cases



Scale Separation and the Spectrum

• density and vorticity spectra for the three cases

• ion heat source and sink spectra for the three cases



Scale Separation in the Edge

• radial extent is narrow, channeled by finite extend of the region where cs/L⊥ > Ve/qR

µ̂ =
me

Mi

(
qR

L⊥

)2

> 1 in edge Lx ∼ 50, 100× ρs

• extent in drift angle is very large: low Te → large a/ρs

a ∼ 103 × ρs Ly = 2πa/q ∼ 2× a

• typical extent for full flux-surface case in medium-sized tokamak

Lx = 128ρs Ly = 2048ρs Ls = 2πqR

• typical grid (2ρs-resolution) (no field aligning: Nθ ∼ Nζ/2×∆q and 16→ 2048)

Nx ×Ny ×Ns = 64× 1024× 16



Between Bursts

• LCFS boundary relatively sharp

• despite robust > 10% fluctuations

During a Burst

• much more activity into SOL

• medium wavelength structures

• source of activity is edge region



Flux Temporal Behaviour



Zonal Profiles between Bursts

• electrostatic potential shows nominal shear layer at LCFS (ra = 1)



Ion Flow Sideband Divergences between Bursts



Spectra between and during Bursts

• amplitudes/energies (left) and fluxes (right), between (top) and during (bottom)



Burst Notes

• electron/ion heat flux variation a factor of about 3

• bursts are strong events but do not completely destroy the neoclassical equilibrium
◦ no “new mode” is involved

• edge/SOL transition is sharp, about 10 to 15ρs

• vorticity spectrum always reaches to k⊥ρi > 1 since if Ti ∼ Te then ρi ∼ ρs

• capture of burst phenomenology requires full scale separation, entire flux surface
◦ fluxtube cases give “too clean,” too strong bursts (quasiperiodic, factor of 10)

• long-wavelength range 0.01 < kyρs < 0.1 necessary as nonlinear energy-dump range

• fluxtube cases can study basic turbulence character
◦ but not the self-consistent interaction with neoclassical equilibrium



Edge versus Core

• main parameter differences are ρs/Lx and Ly/Lx and R/LT
◦ edge: µ̂ > 1, core: µ̂ < 1, following cs/LT versus Ve/qR and hence R/LT ( > 50)

• in the edge, electron dynamics is strongly nonadiabatic
◦ nevertheless, adiabatic coupling is still strong

• hence neither simplified “adiabatic” or “hydrodynamic” or “MHD” models apply

• spectral ranges of free energy, the fluxes, and vorticity separate
◦ dynamics occupies full spectrum, all scales ρs to several LT are involved

• relevance of underlying nonlinear instability physics
◦ some strong linear modes are wiped out by native turbulence: ωrms > γL
◦ weak long-wave linear modes become important either as sinks or as secondary drive

(e.g., TAE, reconnection, ballooning)
◦ a significant fraction of free energy resides in linearly damped modes

(e.g., dissipative shear Alfvén waves)
◦ rule of thumb on relevance of instability: γL > ω∗ for that ky

• consequences of parameter regime: kyρs >
√
LT /R over most of the drive range



usually, this is not the case anywhere in the spectrum (unless: MHD threshold)

(B Scott New J Phys 2002, Phys Plasmas 2005)

this situation is a direct consequence of very large R/L   >> 1 in the edge

if the linear growth rate is above the red line then the instability is relevant

dispersion space bounded by ideal interchange and diamagnetic rates

−2
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0
10
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 *ω
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Relevance Range for Linear Instabilities



Comparison -- Fluctuation Statistics

probability distribution of cross phase for each Fourier mode

basic signature of drift wave mode structure (parallel current dynamics)

unified spectrum, phase shifts between 0 and    /4, in code and TJK experiment

(B Scott Plasma Phys Contr Fusion 2003) (U Stroth F Greiner C Lechte et al Phys Plasmas 2004)

π



wavelet analysis of fluctuation induced transport in code and TJK experiment

Comparison -- Fluctuation Statistics

(N Mahdizadeh et al Phys Plasmas 2004)

both results show same phenomenology: regime break in spectrum

evidence of nonlinear cascade overcoming drive?



Nonlinear Free Energy Cascade

direct cascade
−−> nonlinear drive at small scales
==> passive scalar regime

frequency/scale correlation

matches with frequency break

evidence for onset of
passive scalar regime



coordinate and establish standards for European codes in all categories

Project 4 − instabilities, transport, turbulence

currently: cross−benchmarking on standard cases

global models automatically face the neoclassical equilibrium

separate issues: neoclassical equilibrium, and then transport

currently:

global core benchmarks on Cyclone base case

local and global edge benchmarks on L−mode base caseX

incorporation of trapping effects in fluid codes (may be hopeless)

The EFDA Integrated Modelling Effort (TF−ITM)

wide effort led by P Strand



local fluid vs gyrofluid drift-Alfvén
edge, collisional, cold-ion electromagnetic, fluxtube, saturated

Risø TYR (blue), Jülich ATTEMPT (green), GEM (red), DALF3 (pink)



XX nonlocal gyrofluid field theory −−> edge/core transition

self consistency: do the magnetic background inside the turbulence model

coupling of turbulence to flows extends to the magnetic equilibrium

basics of energetics a central theme for physical understanding

incorporation of trapping effects in fluid codes (may be hopeless)

one should expect surprises affecting design of high performance devices

XXX stable reconnection and equilibration currents

global electromagnetic computationX

new physics themes:

Main Points

essence of the physics of edge turbulence is nonlinear

scales separate for different parts, linear modes wiped out, character changes


