
Collisional Transport in Tokamak Geometry  

M Romanelli (Michele.Romanelli@ccfe.ac.uk) 

 



Outline of the lecture 
•  Symmetries of a Tokamak plasma 
Ø  The system of nested toroidal surfaces tangent to the magnetic field (magnetic surfaces) 
Ø  Derivation of the most suitable coordinate system to describe functions in a space with toroidal symmetry: the 

toroidal coordinates 
Ø  Introduction of the volume element and surface average in toroidal coordinates 
Ø  Examples: calculation of the surface average of some functions 
 
•  The transport problem: time variation of particle and pressure in the volume enclosed by a 

toroidal (magnetic) surface  
Ø  Calculation of classical fluxes 
 
•  Derivation of the P-S current  
Ø  Relation between radial pressure gradients and the P-S current 
Ø  Relation between P-S current and the poloidal component of pressure gradient and electric field 
Ø  Relation between the poloidal variation of the electron temperature and radial pressure 

gradients 
 
•  Calculation of  the P-S fluxes  
Ø  The classical diffusion coefficient and heat conductivities are enhanced by a factor q2 

 
•  P-S Transport of heavy impurities in rotating plasmas  
 
 
References:  Rutherford, P-S, P.Helander, J Wesson, M Romanelli 



A tokamak, as we all know, is a toroidal 
vessel in which a strong toroidal magnetic 
field is produced by external coils: 

Symmetries of a Tokamak plasma 



Symmetries of a Tokamak plasma 

Let us consider a Cartesian coordinate system 
with the z axis coincident with the 

tokamak symmetry axis  

 
•  The magnetic field has cylindrical 

symmetry and can be conveniently written 
in cylindrical coordinates 

 
 
 
 

the inverse map is  

 
 
 

The toroidal component of the magnetic 
field produced by the external coils is  
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Plasma -> toroidal current -> B in (R,Z) plane  

From Ampere’s low: 

                                       (1) 

 

   
R0 : centre of the vacuum vessel.  
Toroidal component of eq (1) is: 

 
                                             (2) 

 
 

Use also divergence of B equal 0 

                                                   (3) 
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Let us take 
 
 

  in this case the solution of equations  (2) and (3) is 
 
 
 
 

cylindrical coordinates -> all B components are non zero  
Curves on the R,Z plane  that have B as tangent vector  

 
   
 
  
 
 
 

                            
 family of concentric circles  

Symmetries of a Tokamak plasma 
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Symmetries of a Tokamak plasma 
The system of nested toroidal surfaces tangent to 

the magnetic field (magnetic surfaces) 
 
The toroidal magnetic field of the space (x,y,z) can be 
written in a very simple way if we introduce the new 
system of coordinates 
 
 (  in the figure has to be identified with r): 
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Symmetries of a Tokamak plasma 

                 vector fields have components 

               relation between the components  

divergence  

In this system of coordinates a function  
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      in general will not be the radius of the 
magnetic surface determined by  

        -> vacum toroidal magnetic field 

Symmetries of a Tokamak plasma 
The magnetic field in toroidal coordinates is: 
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Symmetries of a Tokamak plasma 
An example of realistic tokamak magnetic surfaces arising from the balance 
between the pressure gradient and the jxB force (Grad-Shafranov equation) 
is given by the function: 
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Volume Element and Surface Average   

Let  ),,( θφψf   be a function of   ℜ→ℜ  and let be  consZR =),(ψ

 be a torus in the (R,Z) cylindrical space.  
 

We define: 
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Volume Element and Surface Average 

J -> determinant of the Jacobian 
 

J depends on   

),( ZRψ ),( ZRθ

we will take the map (4) and (5) and calculate the determinant of the Jacobian of map (4). 
 

by definition  

φθψ ddJddxdydzdV ==

  where  

),,(
),,(
φθψ∂

∂
≡

zyxJ
),,(
),,(/1
zyx

J
∂

∂
≡

φθψ and 



φφφ

θθθ

ψψψ

φθψ

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=
∂

∂

zyx

zyx

zyx

zyx det
),,(
),,(

Volume Element and Surface Average 

zyx

zyx

zyx

zyx

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=
∂

∂

φφφ

θθθ

ψψψ

φθψ det
),,(
),,(

from the map (5)  it is to see that 
 

0cossin

cos)cos(sinsinsincos

sin)cos(cossincoscos

det
),,(
),,(

0

0

=
∂

∂
=

∂

∂
=

∂

∂

+=
∂

∂
−=

∂

∂
=

∂

∂

+−=
∂

∂
−=

∂

∂
=

∂

∂

=
∂

∂

φ
θψ

φ
θ

φ

φθψ
θ

φθψ
θ

φθ
θ

φθψ
ψ

φθψ
ψ

φθ
ψ

φθψ
zyx

Rzyx

Rzyx

zyx

= 
[ ]
[ ]φθψφθψφθψ

φθψφθψφθψ

cossincoscoscos)cos(

sinsinsincossin)cos(
22

0

22
0

++−

+++−

R
R

= [ ]θψθψθψ 22
0 sincos)cos( ++− R

= )cos( 0 θψψ +− R



Therefore for the map (4),(5)  we have the result  )cos( 0 θψψ += RJ

The area of the magnetic surface  ψ  is promptly calculated: 
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Using the expression of the Jacobian we can write the average of  ),,( θφψf

 on a circular cross section magnetic surface as: 
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Volume Element and Surface Average 



We aim at calculating the average density of 
chocolate on the surface of a doughnut of major 
radius R0

 and minor radius 
                              

calculation of the surface average  
As an example of application of equation (6) we will 
consider the most well known torus: the doughnut  

 is the density of the chocolate on the surface  
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The second term in the sum above does 
not contribute due to the symmetry of 
the chocolate distribution around  

A different result Is obtained if we consider the 
chocolate to be localized on the outer side of 
the doughnut surface (considerably more 
difficult to achieve in practice!!!) 
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This is due to the fact that the outer area of the torus is larger than the inner. 
For a large aspect ratio doughnut ( 

0/ Ra=ε ) the difference between the outer 

Now coming back to the tokamak problem, we observe that the average value of the toroidal magnetic 
field on the magnetic surface is equal to the magnetic field at the surface axis. 
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Introduction of the transport problem 

Let us consider now a tokamak plasma described by the electron and ion density and pressure  

),(, θψien , ),(, θψiep
Let us consider now the toroidal volume enclosed in the toroidal surface  ),( ZRψ
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Classical and Neoclassical component 

The radial flux of particles and heat has to be calculated from the momentum and energy conservation  
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We will calculate the radial flux of particles and heat in the limit of short parallel mean free path 
               ( ), which implies high collisionality (                                 ) 

In the above limit the friction term and heat flux have been calculated by Braginskii [1] and are                     
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Classical and Neoclassical Component 

Calculate the velocity perpendicular to the magnetic field by taking the xB product: 
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(assuming toroidal symmetry and taking field components of tokamak equilibrium magnetic field). 
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Classical and Neoclassical Component 
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The flux arising from the toroidal component of the perpendicular friction is 
due to the diamagnetic current and is the basic collisional flux that is present 
also in cylindrical geometry. The toroidal electric field is fully inductive. 
 
The flux arising from the poloidal component of the pressure gradient and 
electric field is a neoclassical effect due to the non uniformity of the magnetic 
field over the magnetic surface. It can be seen as due to the friction acting on the 
gyro centres. We will show later that this term is proportional to the toroidal 
component of the friction. 

        (10) 



 Using equation (7) and taking the toroidal component  

Calculation of the classical ion flux 
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Calculation of the classical ion flux 
By replacing 22
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• The diffusion coefficient is defined as the coefficient which multiplies the density 
gradient of the transported species.  
 
• The classical diffusion coefficient is that of ions performing a random walk in the 
radial direction with step the ion Larmor radius and frequency the ion electron 
collision frequency.  
 
• In the derivation of the classical flux we have retained only term of zero order in 
epsilon. 

In a two species plasma the ion density equals the electron density and expression (12) becomes 



Calculation of the P-S particle and heat flux 
In toroidal geometry the perpendicular current is not divergence free 
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Since the radial component of the perpendicular current is zero for ambipolarity and toroidal symmetry  

Only the theta components of the perpendicular current enters the divergence 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∂
+

∂
=⊥ 22 neB

pB
neB
pB

nej φψφψ
θ

  
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∂
+

∂
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∂
+

∂

∂

∂
=⋅∇ ⊥ 2222

sin1
B
Bp

B
Bp

RB
Bp

B
Bp

j ieie φψφψφψφψ θ
θψ

θ
ψθψ

θθθ φ

φ sin
cos1

00

0
2 BB

R
BB

B
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

∂

∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
≅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∂
+

∂
−∂+∂−=⋅∇ ⊥ 22

0

sinsin1
B
Bp

B
Bp

R
pp

B
j ie

ie
φψφψ

ψψ

θ
θ

( ) θψψθ sin2

0
ie pp

B
jj ∂+∂−=⋅∇=⋅∇ ⊥⊥



For charge conservation 
( ) 0=+⋅∇ ⊥θθ jj

 The poloidal component of the parallel current is calculated below  
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The condition for divergence free current is  
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which is an equation for the toroidal component of the current  
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Calculation of the P-S particle and heat flux 



substituting in the equation together with the poloidal component of the perpendicular current  
at first order in epsilon  

 

                                            

Calculation of the P-S particle and heat flux 
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Adding the poloidal components we get 
 

At zero order (in epsilon) the poloidal current is the diamagnetic current plus the inductive current  
(from radial component of  j×B=∇(pe+pi)  ) 
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We will use the PS current to compute the neoclassical radial flux  

  
From the parallel component of the momentum 
balance equation for ions and electrons in the PS 
regime of collisionality 

( ) eiii FBvEnep −×++−∇=0

( ) eiee FBvEnep +×+−−∇=0
The parallel component is (where the F contain only 
the non inductive parallel current): 

θ
θ

θ
θ

θψ

θψ

neEpF
B
B

neEpF
B
B

e
ei

i
ei

+
∂

∂
=

+
∂

∂
−=

1

1

From equation (10) we have  
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The PS flux arises from averaging 
over the magnetic surface the 
toroidal component of the parallel 
friction (non inductive parallel 
current). 
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Calculation of the P-S particle and heat flux 

Need to find poloidal temperature 
gradient 



Following Rutherford (PF, 1974) we use the heat flux and calculate the toroidal component of the heat 
flux from taking the leading component of the perpendicular flux within the magnetic surface: 
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By assuming that the heat flow is divergence free to first order in epsilon we have  
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Calculation of the P-S particle and heat flux 



 taking the parallel component of the heat flux 
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Substituting the toroidal component of q  and the PS current in place of the parallel velocity 
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Placing the poloidal temperature gradient in the equation for the poloidal pressure gradient we have 
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Calculation of the P-S particle and heat flux 
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Inserting this result into the formula for the PS flux 
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Now taking the average we get: 
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Splitting the pressure gradient into temperature and density gradient we can write 
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Calculation of the P-S particle and heat flux 



Calculation of the P-S particle and heat flux 

By identifying   
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As compared to the classical flux, the PS diffusion coefficient and heat conductivity  is enhanced by 
a factor  2q2 

This enhancement is purely due to the toroidal geometry. 
At low collisionality   1/* <<= thVRqνν

 the transport is dominated by particles trapped in the magnetic well (banana particles) the exact 
calculation of the flux requires the use of the drift Kinetic equation and can be found in e.g.  
P. Helander and D.J. Sigmar,  Collisional Transport in Magnetized Plasma, Cambridge University 
Press 
 
The result is that the PS diffusion coefficient and heat conductivity are further enhanced by factor  2/3−ε



Effect of rotation on heavy impurities 

From M. Romanelli et al, EPS 1997 

Momentum	
  balance	
  equa.on	
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electrons	
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  two	
  ion	
  species	
  



Equilibrium with rotation 
From M. Romanelli et al, EPS 1997 

n Trace	
  impurity	
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  -­‐>	
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  is	
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  by	
  i,e	
  	
  

equilibrium -> no friction i,I 

 This solution assumes trace impurity! 



Observation of Ni asymmetry in JET 

From M. Romanelli et al, EPS 1997 

Mi,I =Vφi,I /Vthi,I Mi ≈O(Δ) MI ≈O(1)

JET Ni LBO experiment (C-wall), 1997 



Effect of Rotation on Impurity transport 
In the presence of rotation heavy impurities in the PS regime such as Ni and W have 
 Mach number of order 1 it is show in M. Romanelli M. Ottaviani, 1998, PPCF  that 
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Comparison with W studies in JET 

C. Angioni et al, Phys. Plasmas 22, 055902 (2015) 



Steady state plasma without rotation 

JET 82722,  W evolution from 45.0s to 49.0 s with t=46.0s background plasma 
profiles fixed  
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Steady state plasma without rotation 

JET 82722,  W evolution from 45.0s to 49.0 s with t=47.5s background plasma 
profiles fixed  
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Steady state plasma with rotation 

JET 82722,  W evolution from 45.0s to 49.0 s with t=46.0s background plasma 
profiles fixed , rotation effect included 
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Steady state plasma with rotation 

JET 82722,  W evolution from 45.0s to 49.0 s with t=47.5s background plasma 
profiles fixed , rotation effect included 
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Steady state plasma with rotation 

JET 82722,  W evolution from 45.0s to 49.0 s with t=47.5s background plasma 
profiles fixed , flatter Ti and Te,  rotation effect included 

Ne 

Ti 

NW 

0.0        0.2           0.4         0.6           0.8        1.0 

r/a 

[1015 m-3]  

[103 eV]  

[1019 m-3]  

DΩ	



VΩ	



W35+,W38+,W40+ 

[m2 s-1] 

[m s-1] 

r/a 

0.0          0.2          0.4          0.6          0.8          1.0        

6 

4 

2 

0 

-50  

0  

50 

4.0 

0.0 

0.0 

2.0 

4.0 

6.0 

2.0 

4.0 

2.0 

0.0 



References 

[1] P. Helander and D.J. Sigmar,  Collisional Transport in 
Magnetized Plasma, Cambridge University Press 
[2] J. Wesson, Tokamaks, Clarendon Press, Oxford 
[3] P. H. Rutherford (1974), Physics of Fluids, 17 (9) pp. 1782  
[4] M. Romanelli, M Ottaviani (1998), Plasma Physics and 
Controlled Fusion, 40 pp. 1767 
 
Recent papers on W transport 
 
[5] C. Angioni et al, Phys. Plasmas 22, 055902 (2015) 
[6] C. Angioni et al, Nucl. Fusion 54, 083028 (2014) 
[7] C. Angioni and P. Helander, plasma Phys. Control. Fusion 
56 (2014) 124001  
 


