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Outline of the lecture

Symmetries of a Tokamak plasma
The system of nested toroidal surfaces tangent to the magnetic field (magnetic surfaces)

Derivation of the most suitable coordinate system to describe functions in a space with toroidal symmetry: the
toroidal coordinates

Introduction of the volume element and surface average in toroidal coordinates
Examples: calculation of the surface average of some functions

The transport problem: time variation of particle and pressure in the volume enclosed by a
toroidal (magnetic) surface

Calculation of classical fluxes

Derivation of the P-S current
Relation between radial pressure gradients and the P-S current
Relation between P-S current and the poloidal component of pressure gradient and electric field

Relation between the poloidal variation of the electron temperature and radial pressure
gradients

Calculation of the P-S fluxes
The classical diffusion coefficient and heat conductivities are enhanced by a factor q°

P-S Transport of heavy impurities in rotating plasmas

References: Rutherford, P-S, P.Helander, J Wesson, M Romanelli
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Symmetries of a Tokamak plasma

Enm T Atokamak, as we all know, is a toroidal
vessel in which a strong toroidal magnetic
field 1s produced by external coils:

toroidal field coils _
__ primary
transformer
winding

MK.2 TORUS

NOW USED FOR
INSTABILITY STUDIES

toroidal \
direction

poloidal magnetic field
created by plasma current toroidal magnetic

plasma current field



Symmetries of a Tokamak plasma ©
Let us consider a Cartesian coordinate system The magnetic field has cylindrical
with the z axis coincident with the symmetry and can be conveniently written
tokamak symmetry axis in cylindrical coordinates

B=B,i+B,j+Bk=Bger+B,e:+B,e,

Z R=\/x2+y2

¢ = arctanZ

X
P z=/

the inverse map is
x=Rcos¢

> _ p
- v y=Rsmg
z=/

Q The toroidal component of the magnetic
X field produced by the external coils is

B,=B,R, /R



Symmetries of a Tokamak plasma

Plasma -> toroidal current -> B in (R,Z) plane
From Ampere’s low:

VxB =T (1)
C

j, = J,(R) for RE[R, —a,R, +a]

J, =0 for R-R)|>a

R, . centre of the vacuum vessel.
Toroidal component of eq (1) is:

(aBZ -2 ) Mm@

oR 0/ C

Use also divergence of B equal 0

(1 9 (RBR)+8BZ)=O 3)
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Symmetries of a Tokamak plasma

Let us take
J,(R)=C(R+R,)/R’

in this case the solution of equations (2) and (3) is

7/,
(\\

ZB,, B, (R-R,)
R R

cylindrical coordinates -> all B components are non zero
Curves on the R,Z plane that have B as tangent vector

Vy(R,Z)-B=0
Y(R,Z) = const

81,0 81/1 81/1 81//
oR K 0/ z oR f( ’ )( 0)’ 0/ f( ’ )

Vy -Vy =1 — f(R,Z)=1/J(R-R,} + 2

family of concentric circles

Y(R.Z)=(R-R,))’ + 2



Symmetries of a Tokamak plasma {(f*},,

The system of nested toroidal surfaces tangent to
the magnetic field (magnetic surfaces)

The toroidal magnetic field of the space (x,y,z) can be
written in a very simple way if we introduce the new
system of coordinates

o _ N ( ¥ in the figure has to be identified with r):

Y = \/(w/x2 +y? —R) +Z°

".; '." Z
- 0 = arctan (4)
Jx*+y? - R,
¢ = arctanl
X

and the inverse map

X = (RO + 1) cOS H)cos¢

v = (R, +y cosB)sin ¢ )
z=1smb



Symmetries of a Tokamak plasma

In this system of coordinates a function

f = fly)=const

family of nested toroidal surfaces R, ¥

vector fields have components

B=Bi+B,j+B k=Byer+B,e:+B,e, =B, ey +Byeo + B,e,

relation between the components

B, = R-R, B, + Z B,
\/(R—R0)2+ZZ \/(R—RO)2+Z2
By = - z B, + R-R, B,
\/(R—R0)2+ZZ \/(R—RO)2+Z2
B¢=B¢
divergence
0B
\% B=li(RBR)+ 08, 15
R OR 0Z R 9¢
9B. B cosf :
V-B=_i( Bw)_l_laBa_'_l 2N y €080 B,sind
Y oy Y 90 R ¢ R R
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Symmetries of a Tokamak plasma

The magnetic field in toroidal coordinates is:

_ Bw . B,
R, +ycosO’ 70 R, +y cosf

B, =0; B,

B¢0 -> vacum toroidal magnetic field
it is easy to show that the
V:-B=0
for any

Bﬂ — BHO (z/j)RO
R, +1cost
general case: current of equation (2) more
complicated function of R -> the magnetic
surfaces X-section are not concentric
circles
¥  in general will not be the radius of the
magnetic surface determined by

Vy(R,Z) B =0

Y LIy
a_R=_BZ’a_Z=BR = |Vy|=B,

PR
Z
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Symmetries of a Tokamak plasma ®)

An example of realistic tokamak magnetic surfaces arising from the balance
between the pressure gradient and the jxB force (Grad-Shafranov equation)
is given by the function:

AT
SRR
SN

f" “I“

RS A
Eg

)

2 2 2 p2
Y(R,Z) =1/;—§ (R -R2} +%(R2 _R)-RY| R 1n§_g_(R2 _Rg)_WJ




Volume Element and Surface Average

Letf(z/j,¢, 9) be a function of S}t — §R and let be Y (R, Z) = cons

be a torus in the (R,Z) cylindrical space.

We define:

Y+0 22w

Joly~wf [ 1l-0.9llapasiy

(f@.9.0)) =1lim "= 22— - f@)
fé(w—w)ff]dzpdﬁd¢

y-0

\
A
J

™=
(( ‘}})
=2



Volume Element and Surface Average {C

J -=> determinant of the Jacobian

J depends on

YR, Z) O(R,Z)

we will take the map (4) and (5) and calculate the determinant of the Jacobian of map (4).

by definition
dV = dxdydz = Jdydéde

where

2 9x.2) wmd 1y 29@.0.9)
a(¢969¢) a(x,y,Z)




Volume Element and Surface Average ©
Yy Yy OJy ox dy Oz
ox dy oz oYy JyYy Iy
0@,0,8) _ 400 90 96 0(x,0,2) _ 4 l0x a0z
d(x,y,z) ox dy Oz y,0,9) 00 960 96
o dp ¢ x 9 9%
ox dy 0z dg  dp 09

from the map (5) it is to see that

0x )% : 0z :
—— =c0sf cos —— = = sin & cos —=—(R, + cosf)sm
P @ ™ Y ¢ ™ (R, +y )sin ¢
a(x,y,z) — det —=COSHSin¢ a_y=_1/jsinﬁsin¢ £=(RO+I/JCOSQ)COS¢
0(y,0,9) 060 060 06
a—x=sin0 a—y=z/100549 £=0
o d o9

- (R, +z//cos(9)sin¢[z// cos” @sin ¢+ sin” (9sin¢J+
- (R, +1/JcosH)c0s¢[1/J cos” cosg +1 sin’ ¢9c0s¢]

= - (R0 +Y cosﬁ)[w cos’ 9+1/JSin2 9J

= —Y(R, +ycosh)



Volume Element and Surface Average

Therefore for the map (4),(5) we have the result ‘ J ‘ — zp( R ot w CcOS (9)

The area of the magnetic surface l// is promptly calculated:

Y+o 22w

A) =lim [y ) [Jdydadp
V-0 00

2
= 2m/;f(R0 +1 cosO)dO = Ax’ Ry
0
Using the expression of the Jacobian we can write the average of f (y,9,0)

on a circular cross section magnetic surface as:

f f@,¢,0)(R, +y cosO)db

(f@.9.0)) 2R, =/ @)

\]

N
Py
=

/Z,
|

(

(6)



calculation of the surface average (@)
\=
As an example of application of equation (6) we will . _
consider the most well known torus: the doughnut Equation (6) gives
fnco (R, +y cosB)dO »
n = 0,0 =2 = Reolty | M T Ja =nc0
n(y) = (ny.4.6)) T ok 2 BOh =7

The second term in the sum above does

We aim at calculating the average density of not contr 1bute.du.e to.the symmetry of
chocolate on the surface of a doughnut of major the chocolate distribution around § = 7 /2

radius R ) and minor radius

A different result Is obtained if we consider the

n. W,9,0) chocolate to be localized on the outer side of
the doughnut surface (considerably more
is the density of the chocolate on the surface difficult to achieve in practice!!!)
T 3
n., 0<fO<mxm N, O<H<5; Eﬂ<9<2ﬂ
nc(l/}9¢70)= nc(wa¢39)= 3
0 T<0<2r 0 To<n




calculation of the surface average ()

/2

2 fnco (R, +y cos)db
R
Ly 2ol | Ml [sino]"” = oo | Mot/

n@) = (n@y,9,0)) = — - -2om

0

This is due to the fact that the outer area of the torus is larger than the inner.

For a large aspect ratio doughnut (¢ = 4/ R o ) the difference between the outer
area of the doughnut and that of an equivalent straight cylinder (eclair au chocolat) is
equal to

1/2 1/2 172 €
AA"" = A, —AC =;

Now coming back to the tokamak problem, we observe that the average value of the toroidal magnetic
field on the magnetic surface is equal to the magnetic field at the surface axis.

27 BO RO

R, +y cosB)dEb
B,R, _{R0+wc0s0( o ¥ ) ~

< B¢ >=< >= =B,
R, +1 cost 27R,
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Introduction of the transport problem

/
'{

Let us consider now a tokamak plasma described by the electron and ion density and pressure

ne,i (ZP > 6) pe,i(z/j79)

Let us consider now the toroidal volume enclosed in the toroidal surface (R, Z)
The total number of particles and pressure inside the volume is

N =[n,@.0)dV P, =[p.w.0dV
Vv |4

The goal of transport theory is to determine the confinement time defined as:

oN . N . aPe,i Pe,i

e,l e,l . - —

Jt " ot TZZ’

e,i

the mass continuity equation, in the absence of sources, is

on .
ae’l =-V- n, Z.Ve ; , and by taking the volume integral
Z_ b 9




Introduction of the transport problem O
a]::,i — _!V-I’le,iVe’idV = __!ne,iVe,i . dS

the unit vector normal to the circular magnetic surface has radial direction and the surface
element has been calculated before therefore we can write (using eq. 6)

2

aNe i
81" = 2y JO' n,V,., (Ry +ycosd)dl = _<ne,iVe,i1// > y

The goal of transport theory in the plasma core is to calculate

<ne,i Ve,iz/J > and <ne,iTe,iVe,i¢ >
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Classical and Neoclassical component

/Z,
|

(

The radial flux of particles and heat has to be calculated from the momentum and energy conservation

0
it av =—Vpl.+V-Jz’i+nl.e(E+Vi><B)—Fe,~
{
v,
e'le ot =_Vpe+V.'ﬂ;e_nee(E+veXB)+Fei
3n,
" i+V VI +p Vv, ==-V-q,-m,: Vv, + O,
2 \ ot
3
Ze %‘I_V V)T +pev Vei =_V.Qe_ﬂezvve_Qe

We will calculate the radial flux of particles and heat in the limit of short parallel mean free path
(V,, /v < Rq ), which implies high collisionality (v =vRq/V,, >>1 )

In the above limit the friction term and heat flux have been calculated by Braginskii [1] and are

3 n

F, = meneva(Clu +u ) CnVH I, ———v bxVT,
2w
ce (7)
qd. —nT(C U 3/2veibxu)— el (C ViT, +—— < V2 aVT, —5/—21/ bxVT,
Wee my., CU ce W,



Classical and Neoclassical Component

Calculate the velocity perpendicular to the magnetic field by taking the xB product:

_Vp,xB ExB F,xB

V. - +
" neB® B® neB’
Vp xB ExB F_xB
Ver =7 Le T T T T (8)
n,eB B n,eB
where

B B,\B B B,\B
v, =v—(v-b)b=vwew +(V€E¢—v —9)—¢eg+(v¢—g—v9—¢)—ge

The product on the right hand side gives the following components
(assuming toroidal symmetry and taking field components of tokamak equilibrium magnetic field).

Vpr_l/z/Jang¢e awa¢e +8¢pB0

neB* - neB* Y neB* ' neB®

ExB (E,B, E,B, E,B, E,B,

B | B B v g g %
)

F,xB (FeieB¢ Iy By )e Iy B, £y By
= —_ W —_

— e, +———¢
2 2 2 2 0
neB neB neB neB neB> "’



Classical and Neoclassical Component i)

=
The local radial (perpendicular to the magnetic surface) ion flux is (note that »,v,, =n.v,, )
oy = 1/yo,p.B, ~ nE,B, s nl.quBl9 .\ F,,B, ~ F,;B, ~
iViy 2 2 2 2 2
eB B B eB eB
_ ﬂ 1 dp, —neE. |+ F,yB, _ F,,B, N nieE;Be (10)
- 2 i 1] 2 2
eB " \y a6 eB eB B,

B | F. nE*'B )
E = <niVi > = % l apz _nieEe _ eilg + i ¢2 7 _ EPS +r,-d +EE B
Y eB"\y 060 eB, B

The flux arising from the toroidal component of the perpendicular friction is
due to the diamagnetic current and is the basic collisional flux that 1s present
also 1n cylindrical geometry. The toroidal electric field 1s fully inductive.

The flux arising from the poloidal component of the pressure gradient and
electric field 1s a neoclassical effect due to the non uniformity of the magnetic
field over the magnetic surface. It can be seen as due to the friction acting on the
gyro centres. We will show later that this term is proportional to the toroidal
component of the friction.
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Calculation of the classical ion flux

Using equation (7) and taking the toroidal component

7/,
(\\

F;i_l_ =—-mny (MJ_)

e e e

Now substituting the perpendicular current from (8), (9)

T az/}piBH N awpeBa
L‘p n.eB’ neB’

substituting in (10) we get
F, (d,p. 0
o o el B
eB, e’B n, n

at the zero order in epsilon, we have

r,'d _miznitie T;awnz + T'eaz//ne + nzazp]: + neawz—;
e’ B n. n n. n

l e l e

m.Tv. nl,d,n, nd, T noa,T,
- _ 12 i 2ze awni + +
e’B T'n T T,

i'"e



Calculation of the classical ion flux )

o)
‘{\E’%

i

2 B> therefore we can write the classical flux as

By replacing :0;'2 =

ntld,n, no, I nd,T,
T (12)

+—r Ly
In T

e

cl 2
I =-pv,|d,n+

In a two species plasma the ion density equals the electron density and expression (12) becomes

T 1. d, 6T
Y =—p™v, | [ 1+=2 |0, n+n L+ +—2L=
T T T

1 l l

*The diffusion coefficient is defined as the coefficient which multiplies the density
gradient of the transported species.

*The classical diffusion coefficient is that of ions performing a random walk in the
radial direction with step the ion Larmor radius and frequency the ion electron
collision frequency.

*In the derivation of the classical flux we have retained only term of zero order in
epsilon.



Calculation of the P-S particle and heat flux )

In toroidal geometry the perpendicular current is not divergence free

J1 = ne(vej_ Vi ) = —ne

Vp, x B +Vpl.xB)

2 2
n.eB n,eB

=li( 'w)+laj9 +laj¢ +j¢cost9_jgsin49
W oy wal RIp R R

Since the radial component of the perpendicular current is zero for ambipolarity and toroidal symmetry

V-j

Only the theta components of the perpendicular current enters the divergence

0 pB, 0, 6 pB
jw =ne vP 2¢ + o2 2¢
neB neB

V'jl

1 o awPqu) az/,p,-qu sin @
o + B B? B2

“wae|l B B’ R

d (B, 9
00| B* ] 96
sinﬁ(awpe% +awpiB¢)

d,0.B, N d, p:B, )

1
B

0 (ROH,UCOSHJ Y

= =—-——sinf
90 B, B,

¢

: 1 :
R e B

0

. . 2 :
Vej,=Vj,= _B_(az//pe +awpi)51n6

0



Calculation of the P-S particle and heat flux

For charge conservation
V'(rlne +]Ll9)= O

The poloidal component of the parallel current is calculated below

B B,\B B B \B
] = .Ob = 1 —6+ / _¢ He + ’ 9+ by ¢ ¢e
jy =(-bl Jo—g * i | et Jo g e | e
Therefore
: . B, . B,\B,
= —+ | —
]He Jo B ]¢ BB

The condition for divergence free current is

jHO(l/j)

L
Ho ™10 = Jo 1+ &cost

which is an equation for the toroidal component of the current

. B; . BﬁB¢ . jeo(z/J)
+ v =_JOOT]
Jo B? Ty B? J16 1+ £cosd

R
z

(//f
\

/
'{

=



Calculation of the P-S particle and heat flux %

Adding the poloidal components we get

. 2
j BﬁBsﬁ v, = Joo@) B¢
? B2 1+ ecost B

At zero order (in epsilon) the poloidal current is the diamagnetic current plus the inductive current
(from radial component of jxB=V(p,+tp,) )  Js = Jpmm + Jp

: : By, 1
Joo@) = J gohm B + B (az/}pi +a¢pe)
$0 $0
substituting in the equation together with the poloidal component of the perpendicular current

at first order in epsilon
£cosd

B B £cosd
- (arpi +arpe)_j¢ohmgcoseﬂ = j¢l = + (arpi +arpe)
B¢0 B¢o B¢0 B¢0
. : 2ecostd
.]¢1 = _]@hmgcose_—(arpi + arpe)
00
finally
. , 2ecost A
Jy = Jpm (1= € COSO) (0,p,+0,p.)=j"+ "

60



Calculation of the P-S particle and heat flux ‘<

We will use the PS current to compute the neoclassical radial flux

From the parallel component of the momentum
balance equation for ions and electrons in the PS
regime of collisionality

The PS flux arises from averaging
over the magnetic surface the
toroidal component of the parallel
friction (non inductive parallel

current).
0=-Vp, +ne(E+vl.><B)—Fel. _ ) | o7 B,
0= _V (E B) r Fe) =-mnv,C u =y —Czn—a—gf
=-Vp, —ne\E+v,xB)+ F, Y
The parallel component is (where the F contain only js
the non inductive parallel current): and using W~y = ——
ne
B — 1 ap, h
’ l/j _meveiCIEJL_ 2 _a]-; = 1 ape neE'g
B — 1 dp, o € Y 960 y 90
—Foa) =——%+nek,
B, Y 40
B 2&ecost 107, 1adp
: my,.C (8 ,+0 P,-)— Con———== * +nek,
From equation (10) we have B, eB, " v Y 960 y 06

Need to find poloidal temperature
gradient



Calculation of the P-S particle and heat flux %'

Following Rutherford (PF, 1974) we use the heat flux and calculate the toroidal component of the heat
flux from taking the leading component of the perpendicular flux within the magnetic surface:

5T (1
=—<° bxVT
QeJ_ 2 (eB e)

The poloidal component is

B,  5nT ol

+
B, 7" 2eB or

qe@ =

By assuming that the heat flow is divergence free to first order in epsilon we have

5enT, cos dT,
eByy Y

Qe¢ =



Calculation of the P-S particle and heat flux C)

taking the parallel component of the heat flux

9de| = nTe(C Y ) (C Vi L. )

my

eel

Substituting the toroidal component of q and the PS current in place of the parallel velocity

B 5enT cos@ oT B 2¢&cosél nl 1 oT
- e ¢ =-TC, (awpe+8wpl.)— ~C,——
B, eB,, 9y B, eB,, my, "~y 00

B 2my,.£cosf 5 a7, 1 o7,
-n——= C(wpe+8 p) =—-n—
B, CseBy, 2 Iy

Placing the poloidal temperature gradient in the equation for the poloidal pressure gradient we have

B 2 0
meveicl e (
B, eB,,

C B 2my , ecosf 5097, ( v d ) _ 1 dp,
B CeB, 2oy b T h

az//pe + az/;pi)-l_




Calculation of the P-S particle and heat flux ©)

B 02myV € cost

e’ el

1 ap,

+nek,

2
(C +g )(%pﬁ%pi) 26 o

eB’ g0 3 ZC 61/)

Inserting this result into the formula for the PS flux

"= <— 2mevel.(25 cosd (1+£cosd)
eB~ 9o

C 5 C,oT
G +C_2)(a¢pe +a¢pi)__n_2_e

Now taking the average we get:

2
. T

2
eB oo

2m1/£B
BeBeo

FPS —

2
(C + g )(awpe +81/jpl.)—§ng o1,

Splitting the pressure gradient into temperature and density gradient we can write

' 2 n2 2 1 aT
2m€7;eve’2€ By C1+C nla T +n— 1 d, T+T6' n+0d,n —é—gn—e
ByeB g0 C T T T

3

7 = _

e e e
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Calculation of the P-S particle and heat flux

Ve
(i
L=

By identifying 4> = £°By and p2 = m—zT we have
B’ 0 Boe
2
'™ =-2¢"p°v C1+g 1+ awn+£(awTe +0,T,) _2n G, ot
c,\\ ') T 27, C, 0y

As compared to the classical flux, the PS diffusion coefficient and heat conductivity is enhanced by
a factor 2¢°
This enhancement is purely due to the toroidal geometry.

At low collisionality 1/* = qu / Vth << 1

the transport is dominated by particles trapped in the magnetic well (banana particles) the exact
calculation of the flux requires the use of the drift Kinetic equation and can be found in e.g.

P. Helander and D.J. Sigmar, Collisional Transport in Magnetized Plasma, Cambridge University
Press

The result is that the PS diffusion coefficient and heat conductivity are further enhanced by factor €

3/2



Effect of rotation on heavy impurities )

=2

From M. Romanelli et al, EPS 1997

0=-Vp, —ne(E+V,xB)+F, +F, .

F;i =-Vp, +Zinie(E+I7i X E)"' ﬁ;‘z +F;'e > (1)

E'=-Vp,+Zmn,e(E+V,xB)+F, +%
/N

——

b

. Momentum balance equation for
F = —anZRZéR electrons and two ion species

—

U=v; —v;.



Equilibrium with rotation ©

From M. Romanelli et al, EPS 1997

po o, 1 = mQ (R +rcosh)cosd E,

2)

MTrace impurity approximation -> E is determined by i,e

Vi =V 1o > equilibrium -> no friction i,|

n:(r) z 0’ m. Z,1, 5 N QP Z m; 2
n, = nI(O)(n (O)) exp[—ml(l— - T+IZ - )(R“ - R, )— L (r“ —2rRO)
i I iTe

This solution assumes trace impurity!



Observation of Ni asymmetry in JET

From M. Romanelli et al, EPS 1997

M il = V¢>i,] / Vthi,l

M, ~O0(A) M, ~0(1)
3 10719 [m-3]
(a)+2.5ms KW S
~1.5 |
15~
20253035 20253035 20253.035
R (m) 0‘0010 I I(Ill‘l . IO.‘Z' I ,QISI . Ol‘ o :Obl I

JET Ni LBO experiment (C-wall), 1997

PR R RTINS R S AE RE ST SR T AE SN
0.6 Q.7

Q.E



Effect of Rotation on Impurity transport

In the presence of rotation heavy impurities in the PS regime such as N1 and W have
Mach number of order 1 it is show in M. Romanelli M. Ottaviani, 1998, PPCF that

' =< nVv, Zw= D0, <n1 >w + Vp <n1 >1,u

m*Q’R;

D,=D, (1+M**=D,.(1+
Q PS( ) PS( 2Tl

)2

0.1,
V, =D,z p P
Pio

m (M (1+3eM +2eM ?)-R,0 (eM)
m Re(l+ M)

Where — m=m, —Zm, and m = (m,—ZmT, /(Te + Tl))
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Comparison with W studies in JET (@)

JET #82722,t=459 s JET #82722,t=475s

“ JET W SXR emis'smn [(Wim®) - W SXR emission [W/m’]
ll , | 1150 ol 2500
JET #82722 | {400 | 2000
> Predicted SXR power - - 200 - oo

density emitted by W <~ °| ~]

#using W SXR cooling -05¢ 200 1000
actor) 7l 100 500

> SXR tomogra hﬁ a) S b ki
[courtesy of lynar] -
» Up-down asymmetry - | e
might be evidence of " .. bt ¥
impurity-ion friction
effect, notincluded in -
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JET 82722, W evolution from 45.0s to 49.0 s with t=46.0s background plasma
profiles fixed , rotation effect included
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profiles fixed , rotation effect included
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JET 82722, W evolution from 45.0s to 49.0 s with t=47.5s background plasma
profiles fixed , flatter T, and T, rotation effect included
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