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Motivation

We need an efficient description for a plasma:

Coulomb interaction has an
infinite range

Motion of each particle is
connected to the motion of all
other particles

Number of particles in systems
we are interested in is enormous
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Fokker-Planck theory and stochastic motion

Motivation

From individuals to society: statistical approach and
distribution function

Fusion applications: single particle motion not interesting. Rather the
evolution of macroscopic behaviour. This can be calculated if we know

f(r,v, t), (1)

the probability density at time t to find a particle in phase space volume
element (d3r, d3v).
Usually,

∫
fd3rd3v = N and it is called the distribution function.

Each particle moves in a fluctuating field produced by the other particles
→ small-angle collisions
→ essentially Brownian motion
→ probabilistic view w/ step-like Markov processes
→ Fokker-Planck equation

Note: there are situations where the Fokker-Planck approach is not valid
but one has to include strong head-on collisions as well. For example
dense and cold plasmas in white dwarfs.
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Motivation

NOTE: The issues presented here involve not only some
tedious mathematics but also several clever tricks that are not
obvious. Most of these can be found in the dissertation of
Eero Hirvijoki [EHD2014] and references therein.

Here we wish to only outline the procedures.
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Fokker-Planck theory and stochastic motion

Derivation of Fokker-Planck equation

How to describe evolution of f(z, t) mathematically:

Consider a single particle:

First, the particle is found at z = (r,v)

An instant later, the particle is found at z + ∆

Transition probability from z to z + ∆ during a time τ described by
Wτ (z,∆), with normalization

∫
Wτ (z,∆)d∆ = 1

The probability density for finding the particle at z after time τ is

f(z, t+ τ) =

∫
d∆ f(z−∆, t)Wτ (z−∆,∆), (2)
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Derivation of Fokker-Planck equation

Assume small steps due to small-angle Coulomb collisions:

1 Taylor expand f and Wτ around z

f(z, t+ τ) =

∫
d∆

[
f(z, t)Wτ (z,∆)− ∂

∂z
(f(z, t)Wτ (z,∆)) ·∆

+
1

2

∂

∂z

∂

∂z
(f(z, t)Wτ (z,∆)) : ∆∆ +O(∆∆∆)

]
.

2 Rearrange terms

f(z, t+ τ)− f(z, t)

τ
=− ∂

∂z
·
(
f(z, t)

〈∆〉
τ

)
+

1

2

∂

∂z

∂

∂z
:

(
f(z, t)

〈∆∆〉
τ

)
+O(

〈∆∆∆〉
τ

),

Here the expectation value with respect to transition probability is

〈. . . 〉 =

∫
d∆Wτ (z,∆) . . .
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Derivation of Fokker-Planck equation

Include only small-angle collisions:

In fusion plasmas, 〈∆〉τ and 〈∆∆〉
τ dominate higher order terms by a

factor ln Λ (# of particles within the Debye-sphere >> 1):

∂

∂t
f(z, t) = − ∂

∂z
· [(ż + a(z, t))f(z, t)] +

∂

∂z

∂

∂z
: [D(z, t)f(z, t)] , (3)

where the Hamiltonian part ż arises from the deterministic motion,
Wτ = δ(żτ −∆), and the collisional friction (or drag) vector and diffusion
tensor (the Fokker-Planck coefficients) are

a(z, t) = lim
τ→0

〈∆〉
τ
, (4)

D(z, t) = lim
τ→0

〈∆∆〉
2τ

. (5)

Careful: ln Λ determines the validity of the Fokker-Planck theory. Theory
completely breaks down when ln Λ→ 1. Error is proportional to 1/ ln Λ
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Derivation of Fokker-Planck equation

The effect of collisions in particle space

(Courtesy of Alain Brizard)



Guiding center Fokker-Planck theory and Monte Carlo method

Fokker-Planck theory and stochastic motion

Derivation of Fokker-Planck equation

Conventional form of the FP equation

The collisional terms, a and D, are often written separately from the
Hamiltonian contribution:

∂

∂t
f +

∂

∂z
· (żf) = C [f ] , (6)

and the right-hand-side, C [f ], is called the collision operator

C [f ] =− ∂

∂z
·
[
af − ∂

∂z
· (Df)

]
≡ − ∂

∂z
· J, (7)

and J is the collisional flux density.

Note#1: This is physically well motivated
Note#2: The divergence form of the collision operator guarantees
conservation of particles.
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Deboning the FP equation, Part I: the RHS

Particle Fokker-Planck coefficients a and D

The particle phase space Coulomb collision operator acts only on v:

C [fa] =
∑
b

Cab [fa, fb] =
∑
b

− ∂

∂v
·
[
aabfa −

∂

∂v
· (Dabfa)

]
. (8)

The friction and diffusion coefficients a and D are [e.g., Ichimaru’s book]

aab =
cab
m2
a

(
1 +

ma

mb

)
∂hb
∂v

, Dab =
1

2

cab
m2
a

∂

∂v

∂

∂v
gb, (9)

where a and b refer to different species and cab = q2
aq

2
b ln Λ/ε0.

The Rosenbluth potentials, hb and gb, are defined

hb(z) =

∫
dz′δ(x− x′)fb(z

′)
1

|v − v′| , (10)

gb(z) =

∫
dz′δ(x− x′)fb(z

′)
∣∣v − v′

∣∣ . (11)
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Deboning the FP equation, Part I: the RHS

These coefficients have nice physical properties:

ṗab = −ṗba (12)

ṗaa = 0, (13)

Ėab + Ėba = 0 (14)

Ėaa = 0 (15)

(16)
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Deboning the FP equation, Part I: the RHS

FP coefficients in isotropic background plasma
Often the background plasma is assumed to have isotropic velocity
dependence, fb(z) = fb(x, v) → coefficients become simpler:

aab =−
(

1 +
mb

ma

)
νab v, (17)

Kab =− νab v, (18)

Dab =D‖,ab
vv

v2
+D⊥,ab

(
I− vv

v2

)
, (19)

where the scalar coefficients are defined

νab =− cab
m2
a

ma

mb

1

v
h′b(v), (20)

D‖,ab =
1

2

cab
m2
a
g′′b (v), (21)

D⊥,ab =
1

2

cab
m2
a

1

v
g′b(v). (22)

Symbols ‖ and ⊥ are wrt to the local magnetic field direction.
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Deboning the FP equation, Part I: the RHS

FP coefficients for Maxwellian plasma:

Background in thermal equilibrium, (typical of today’s tokamaks):

fb =
nb

π3/2v3
b

exp
(
−v2/v2

b

)
, (23)

the diffusion and friction coefficients become:

D‖,ab(v) =
1

2

cab
m2
a

nb
v
G(v/vb), (24)

D⊥,ab(v) =
1

2

cab
m2
a

nb
v

(
erf(v/vb)−

1

2
G(v/vb)

)
, (25)

νab(v) =
cab
m2
a

ma

mb

nb
v2
b

G(v/vb)

v
. (26)

where the Chandrasekhar function G(x) is defined as

G(x) =
erf(x)− 2x√

π
exp(−x2)

x2
. (27)
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Deboning the FP equation, Part II: the LHS

Hamiltonian part of the FP equation:

One could simply use the Lorenz force to write ż.
However, with the guiding-center (GC) formalism in mind, we are better
off starting rigorously with Hamiltonian formalism.

Recalling basic stuff from classical mechanics:

the dynamics of a system is contained in the system Lagrangian, γ

in 1D, γ = p · dq −H · dt
the equations of motion are obtained by minimizing the action
integral,

∫
γ
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Deboning the FP equation, Part II: the LHS

Path of least action in 3D:

z = (r,v), with components zα

Minimizing the action in 3D gives

∂zα

∂t
= {zα, H} (28)

where on the RHS we have the Poisson bracket,

{f, g} ≡ ∂f

∂zα
Παβ

∂g

∂zβ
. (29)

and Παβ is the Poisson matrix given as the inverse of the Lagrange matrix

ωαβ =
1

2

(
∂γβ
∂zα

− ∂γα

∂zβ

)
, (30)
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Deboning the FP equation, Part II: the LHS

In the presence of electric and magnetic fields E = −∇Φ− ∂A/∂t,
B = ∇×A, the Hamiltonian and Lagrangian are

H =
1

2
mv2 + qΦ (31)

γ = (mv + qA) · dx−Hdt, (32)

and the Poisson bracket becomes

{f, g} =
1

m

(
∇f · ∂g

∂v
− ∂f

∂v
· ∇g

)
+
qB

m2
· ∂f
∂v
× ∂g

∂v
. (33)

Then it is easy to show that

∂zα

∂t
= {zα, H} (34)

is equivalent to

∂x

∂t
= v

∂v

∂t
=

q

m
(E + v ×B) (35)
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Deboning the FP equation, Part II: the LHS

Note

The Poisson brackets play a crucial role when the GC formalism is
derived using Lie transformations. Thus the silly-appearing effort.
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Equivalence to a stochastic differential equation

Solving the FP equation I: straightforward approach

Use finite difference, finite element (FEM) methods →

In the full 6D phase space, this leads to enormous matrices

→ mostly applicable when the # of coordinates can be brought
down to 3 with various assumptions and approximations
(axisymmetry, flux-surface averaging, orbit averaging, ...)
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Equivalence to a stochastic differential equation

Solving the FP equation II: Monte Carlo method

Kolmogorov: FP equation is equivalent to a
stochastic differential equation!

(The proof can be found in [EHD2014])

first: Simulate a large number of test particle trajectories according the
stochastic differential equation

then: Construct the distribution function as a statistical average of the
simulated trajectories
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Equivalence to a stochastic differential equation

Langevin equation for a test particle

The Fokker-Planck equation

∂

∂t
f(z, t) = − ∂

∂z
· [(ż + a(z, t))f(z, t)] +

∂

∂z

∂

∂z
: [D(z, t)f(z, t)] ,

is equivalent to a stochastic differential equation, the Langevin equation

dz = [ż + a(z, t)] dt+ σ · dβ, (36)

where the matrix σ is defined via a decomposition of the diffusion tensor

2D = σσT . (37)

and the stochastic differential dβ denotes an infinitesimal change in the
random variable β which has zero mean and variance t. (The upper
index T denotes a transpose of a matrix.)
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Equivalence to a stochastic differential equation

Getting ready to simulate minority test particles

Neglect self-collisions, Caa [fa, fa], and assume isotropic background
populations → diffusion tensor straightforward to decompose for σ →

dv = [v̇ − νv] dt+
√

2D‖
vv

v2
+
√

2D⊥
(
I− vv

v2

)
, (38)

dx = ẋdt, (39)

where

ν =
∑
b(1 +mb/ma)νab, D‖ =

∑
bD‖,ab, and D⊥ =

∑
bD⊥,ab,

and the Hamiltonian equations of motion are

ẋ = v, v̇ = (q/m) (E + v ×B) . (40)

And we are done:
– Simulate particles with the stochastic differential equation.
– Construct the distribution function from the trajectories.
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Equivalence to a stochastic differential equation

Integrating Langevin equation

For strongly peridodic motion (such as a particle gyrating around a
magnetic field), Runge-Kutta (RK) is not an ideal choice since it
accumulates error.

For ASCOT, leap-from Boris, familiar from PIC method, is used to follow
gyro orbits for long times (slowing-down times for MeV-range particles)

Typically, the entire collision term is integrated with the simple Euler
method. This is for historical reasons, but could be discussed:

for consistency, all the deterministic terms (including friction) in the
Langevin equation should be integrated with same accuracy?

on the other hand, the collision term does not have the Hamiltonian
nature . . .

In ASCOT, the Wiener process simply applies the ’binary method’,
(-1,+1), but other choices exist.
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Guiding center formalism

Motivation

In many situations, magnetic field and background plasma can be
considered constant across the Larmor orbit,

ρL << B/∇B, (41)

ρL << n/∇n, T/∇T (42)

Why waste computer resources on the trivial gyro motion???
→ get rid of the gyration in the equations!

First approach by Alfvén, Nortrup and others before 1970’s:

expand the magnetic field in Taylor series around guiding center

average the Lorenz force law over the gyro angle

Problems:

The equations of motion do not conserve energy...

How to average out the larmor motion from the collision operator...?
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Guiding center formalism

Motivation

Guiding center vs. particle

Guiding center often misunderstood as the average of the particle
position over a single Larmor rotation, i.e., X ≈

∫ 2π
0 x dζ/(2π).

However, rigorous definition is a coordinate transformation

x = X + ρ,

where ρ is the vector from the guiding center position to the particle
position. Its length, ρ, is called the Larmor radius.

In principle, for any function we have simple transformation rules

f(x) = f(X + ρ) =
∑
n

1

n!
(ρ · ∇)nf(X) = exp (ρ · ∇)f(X) ≡ F (X),

F (X) = F (x− ρ) =
∑
n

1

n!
(−ρ · ∇)nF (x) = exp (−ρ · ∇)F (x) ≡ f(x)
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Guiding center formalism

Motivation

But how to define ρ, i.e., the transformation?

In the push-forward (pushes particle mappings to guiding center
mappings), f(x) = exp (ρ · ∇)f(X) = F (X), we have ρ evaluated at
the guiding center position X.

In the pull-back (pulls guiding center mappings back to particle
mappings), F (X) = exp (−ρ · ∇)F (x) = f(x), we have instead ρ
evaluated at the particle position x.

So, do we define ρ = −mv ×B/(qB2) and evaluate it in the proper
place, regarding whether we are discussing pull-back or
push-forward?

Result: integrating the particle orbit in nonuniform B and evaluating the
guiding center position accoding to X = x +mv ×B/(qB2) gives a point
that oscillates at the same frequency as the particle orbit, i.e., the motion
of X would not be independent of the gyrating motion.
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Guiding center formalism

About Lie-transformations

Dr. Lie comes to rescue!

The rapid gyro motion can be eliminated formally using the Lie transform
perturbation method.

Basic idea:
Find a transformation of coordinates such that, in the new coordinates,
the transformed Lagrangian is independent of the gyro angle.

Things to keep in mind:

The gyro angle can still be resolved but it is not necessary.

In the FP equation, the collisional part will still contain the gyro
angle→ has to be averaged

Here, the proceduce will only be outlined.
The math is tedious and not straightforward
→ Those interested in details, see [EHD2014).
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Basic concepts of the Lie Transformation

Lie transformation is defined by pull-back and push-forward operators:

Tn = exp(εnLGn
)

T −1
n = exp(−εnLGn

)

where

ε is a smallness parameter, giving the order of the near-identity
transformation. Thus the term ’perturbation’.

LGn
is the so-called Lie derivative, generated by a vector field Gn.

Lie-derivative of a function reduces to LGnF = Gαn∂F/∂Z
α so that

exp (εnLGn)F = exp (εnGαn∂/∂Z
α)F . A Lie-transformation is thus

closely related to the original idea f(x) = exp (ρ · ∇)f(X).

We start carrying out the transformation of both coordinates and the
Lagrangian not knowing what the transformation is.

The generating functions are determined by requiring that the
transformed Lagrangian is independent of the gyro angle.
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About Lie-transformations

Outline of the procedure

The transformation Tgc : zα → Zα changes particle coordinates
zα = (x, v) to GC coordinates Zα = (X, v‖, µ, ζ), where

X = coordinates of the guiding-center position

v‖ = the velocity parallel to the magnetic field

ζ = the gyro angle

The near-identity transformation (ρL small) can be expanded

Tgc = 1 + εLG1
+ ε2(LG2

+
1

2
L2
G1

) (43)

and the transformed Lagrangian Γ becomes

Γ(Zα) = T −1
gc (ε−1γ0 + γ1) + dS = (ε−1Γ0 + Γ1 + εΓ2 + ...) (44)

where dS is a gauge function for clean up.

Require that each Γn is independent of ζ
→ Gn’s determined!
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Guiding-center Lagrangian & friends

After a fair amount of algebra and very clever thinking [EHD2014]:

Γ =

(
ε−1qA +mv‖b̂− ε

mµ

q
R?
)
· dX + ε

mµ

q
dζ −Hgcdt, (45)

where µ =
mv2⊥
2B is the magnetic moment, Hgc = 1

2mv
2
‖ + µB is the

guiding center Hamiltonian, and R? = R+ (τ/2)b̂, where R Littlejohn’s
gyrogauge field with τ = b̂ · ∇ × b̂ being the magnetic field-line twist.

The GC Lagrangian allows the following construction project:

construct ωα,β

→ Πα,β

→ {F,G}gc
→ Ż = {Z,Hgc}gc, the equations of motion!
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About Lie-transformations

An example of the Guiding center Poisson bracket

In the absence of time varying fields using phase space coordinates
Zα = (X, v‖, µ, θ), with v‖ the guiding center velocity parallel to the
magnetic field, µ the magnetic moment, and ζ the gyro-angle:

Poisson bracket:

{F,G}gc =ε−1 q

m

(
∂F

∂ζ

∂G

∂µ
− ∂F

∂µ

∂G

∂ζ

)
+

B?

mB?‖
·

(
∇F ∂G

∂v‖
− ∂F

∂v‖
∇G

)
− ε b̂

qB?‖
· (∇F ×∇G) .

Hamiltonian:

Hgc = mv2
‖/2 + µB + qΦ

Here B? = B + ε(mv‖/q)∇× b̂, B?‖ = B? · b̂, and b̂ is the magnetic field
unit vector.
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Guiding center formalism

About Lie-transformations

GC equations of motion

The equations in form ready to be programmed are

Ẋ ={X, Hgc}gc = v‖
B?

B?‖
+ ε

b̂

qB?‖
× µ∇B, (46)

v̇‖ ={v‖, Hgc}gc = − µ
m

B?

B?‖
· ∇B, (47)

µ̇ ={µ,Hgc}gc = 0, (48)

ζ̇ ={ζ,Hgc}gc = ε−1Ω + Ẋ ·R?, (49)
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Guiding center formalism

About Lie-transformations

Note:

X, v‖, µ do not depend on ζ

µ is a constant of motion in GC formalism

we haven’t lost any information. The gyro angle ζ can still be
followed if so desired.
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Guiding center formalism

About Lie-transformations

Drift orbits

We now have a powerful tool that
allows:

to follow the drift orbits, traced
by the guiding centers of a test
particle.

5 6 7 8
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Transforming the FP equation

So far only LHS = the Hamiltonian part of the FP equation transformed.
How to transform the entire FP equation, including the collision operator?
Answer: the Poisson brackets!

The velocity derivative ∂/∂vi can be written in terms of Poisson brackets:

∂f

∂vi
=

1

m
{xi,H} (50)

→ Write the FP equation in terms of Poisson brackets and use the known
transformation {f, g} → {F,G}gc

∂f

∂t
+ {f,H} = {xi,mKif −m2Dij{xj , f}}. (51)

Here we have used K = a− ∂
∂v ·D for practical reasons.
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Guiding center Fokker-Planck equation

Carrying out the GC transformation:

∂F

∂t
+ {F,Hgc}gc = {T−1

gc x
i,m(T−1

gc K
i)F −m2(T−1

gc D
ij){T−1

gc x
j , F}gc}gc,

(52)

where where F (Zα) is the transformed distribution function in
transformed coordinates.
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Towards Langevin equation in GC coordinates

To find the corresponding Langevin equation, use the divergence form:

∂F

∂t
+ Żα

∂F

∂Zα
= − 1

J
∂

∂Zα

[
J
(
mKαF −m2Dαβ ∂F

∂Zβ

)]
= Cgc[F ], (53)

where the GC friction and diffusion coefficients, Kα and Dαβ , are

Kα = (T −1
gc K) ·∆α, (54)

Dαβ = (∆α)† · (T −1
gc D) ·∆β , (55)

and ∆α are so-called projection vectors [EHD2014].
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Eliminating the last traces of ζ

The GC distribution function F (Zα) and the friction and diffusion
coefficients still have ζ dependence → FP has to be averaged over ζ.
This tedious job can be found in [EHD2014], yielding

∂F
∂t

=− 1

J
∂

∂Zα
(
JAαF

)
+

1

J
∂2

∂Zα∂Zβ
(
JDαβF

)
, (56)

where the diffusion term was split into two with the coefficient

Aα = Żα +Kα +
1

J
∂

∂Zβ
(JDαβ). (57)

containing both the Hamiltonian contribution and the deterministic part
of the collision operator.
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GC Langevin equation

Now the ’Kolmogorov connection’ can be used →

dZα = Aαgcdt+ Σαβgc dWβ , (58)

where dWα is again a Wiener process with zero mean and variance t, and
Σαβgc can be calculated from (NO LONGER EASY! [EHD2014])

Dαβgc =
1

2
Σαγgc Σβγgc , (59)
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GC collision operators for numerical implementation:
Friction (drag)

〈KX〉 = εν
b̂

Ω?‖
× Ẋ +O(ε3), (60)

〈Kv‖〉 = −νv‖ − ελ
µB

mv‖
ν +O(ε2), (61)

〈Kµ〉 = −(2− ελ)νµ+O(ε2), (62)

where λ = v‖b̂ · ∇ × b̂/Ω
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GC collision operators for numerical implementation:
Diffusion

〈DXX〉 =ε2
[
(D‖ −D⊥)

µB

2E +D⊥

]
I− b̂b̂

(mΩ?‖)
2

+O(ε3), (63)

〈Dv‖v‖〉 =
D‖
m2

+ (1− ελ)
D⊥ −D‖

m2

µB

E +O(ε2), (64)

〈Dµµ〉 =(1− ελ)
2µ

mB

[
(D‖ −D⊥)

µB

E +D⊥

]
+O(ε2), (65)

〈DXv‖〉 =ε2
v‖

(mΩ?‖)
2

(D‖ −D⊥)
µB

2E ∇⊥ lnB

+ ε2
v‖

(mΩ?‖)
2

[
D‖ +

µB

2E (D⊥ −D‖)
]

b̂ · ∇b̂ +O(ε3), (66)

〈DXµ〉 =− ε µ

2mE (D‖ −D⊥)
b̂

Ω?‖
× Ẋ +O(ε3), (67)

〈Dµv‖〉 =(1− ελ)
µv‖
mE (D‖ −D⊥) + ελ

µ

v‖m2
D‖ +O(ε2), (68)
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Does your guiding center code include the spatial effects?

Apparently, all GC codes today use particle phase space C [f ]

Proper GC collision operator includes the spatial drag and diffusion!
(Recall: particle collisions only in v)
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Drift orbits and neoclassical transport

We now have a powerful tool that
allows:

to follow the drift orbits, traced
by the guiding centers of a test
particle.

to simulate the neoclassical
transport, caused by the
combined effect of toroidal
geometry and Coulomb
collisions, of the test particles.
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On the choice of integrator

Tokamak geometry exhibits a host of non-trivial orbits → the integrator
should be reasonably accurate
Typical choice: 4th order Runge-Kutta with 5th order error checking.
Again, (in our opinion) the deterministic part = Hamiltonian motion +
deterministic part of the collision operator, should be integrated at the
same accuracy.
The stochastic part is integrated with simple Euler method.
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High Performance computing

Test particles in tokamak magnetic field

In high performance plasmas, magnetic field dominates the test particle
behaviour. How do we get the values of magnetic field and its derivative,
needed for the equations of motion?

t < 1990’s: assume circularly symmetric plasma with simple limiter
→ analytical expression for B.

very fast
very accurate
has very little to do with the reality of shaped and diverted plasmas

1990’s – 2000’s: introduce diverted geometry with non-circular cross
section (ASCOT got experimental backgrounds in ∼1997.)

allows simulations in the SOL and divertor region
calculation slows down because 2D interpolation needed
choice of interpolation routine not trivial
still assumes axisymmetry

How about the still prevailing assumption of axisymmetry???
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High Performance computing

Magnetic field strength along ITER OMP separatrix

Effect of the finite # (= 18) of toroidal field coils
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High Performance computing

Magnetic field strength along ITER OMP separatrix

Effect of the ferritic inserts
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High Performance computing

Magnetic field strength along ITER OMP separatrix

Effect of the TBMs (Test Blanket Modules)
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High Performance computing

Magnetic field strength along ITER OMP separatrix

Effect of the RMP coils
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High Performance computing

HPC: super computers needed to simulate fast ions

A 3.5 MeV alpha-particle in ITER slows down in ∼1 s. Simulating it takes
(with realistic 3D B field and wall and collisions etc)

∼1 min in GC approach as a guiding centre or an

∼1 h in full orbit approach

One needs from thousands to millions of alphas, depending on the
quantity of interest → super computers are a good idea.
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High Performance computing

Building blocks for a MC-FP simulation tool
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High Performance computing

HPC: super computers are complicated beasts with many
layers and connections of variable speed

First: make an efficient
program for one CPU on a
desktop. Then the code can be
made to be run massively
parallel.

What follows applies to codes
that are run with some
thousands of CPUs. Codes
requiring more CPUs would use
more advanced tools.
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Utilizing many nodes and CPUs

Our problem is Embarassingly Parallel: just distribute the particles to
different CPUs for calculation. How to do that?

Message Passing Interface (MPI) offers a
relatively simple way to distribute the tasks to
the various nodes. In fact, each CPU on each
node can run a separate task. Messages are
passed only when combining final results from
all tasks. MPI is good for cluster
environments (such as our HELIOS in Japan).

High Troughput Computing (HTC): we have
implemented support for CPU scavenging with
HTCondor enabled workstations in our
department in Finland. This works well
because the markers are independent.

In principle also Grids would work, but we
haven’t needed that option – yet.
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Using the (slow) disk efficiently

In any supercomputer the computing nodes outnumber the nodes
handling the shared filesystems. Therefore file reading and writing needs
attention. Here are some solutions:

One computing task can do the file reading and writing, then MPI is
used to send the data as messages. (We use this approach.)

Using compressed binary file formats can reduce reading and writing
times and enhance user experience. (We use HDF5.)

There are parallellized high level file access libraries, such as parallel
HDF5 and parallel NetCDF. They use lower level libraries to access
parallelism in the computer.



Guiding center Fokker-Planck theory and Monte Carlo method

High Performance computing

Making do with the memory on a node

All the CPUs on a single node share the same memoryspaces.
What do we need the memory for:

Background magnetic field is a largish (a few GB)

The particle density histogram is a multidimensional object, often at
least 4D (at least several MB, grows quickly with number of slots)

Luckily until now the amount of memory per CPU has remained on the
level of several GB / CPU for years (Helios: 16 cores sharing 58GB).
If, in the future, the memory between processes on each node has to be
shared → use Open Multi-Processing (openMP)

Typically each node would house a single MPI task

Each task would then be divided with openMP to multiple threads,
typically one per CPU core on each node.

Threads would share the memory. This means that the programmer
needs to make sure the threads do not corrupt the data e.g. by
concurrently writing to it.
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Future: GPGPU / Accelerators

June 2014
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Future: Many many cores, same memory

...

Xeon

Xeon Phi

Node

Xeon...
Core Core...

Core ...

DDR3 memory

Node ... ...

...

L3 cache

L1 cache

1 Threads2 3 4

L2 cache

L1 cache

Thread 2

L2 cache

Thread 1

ALU

Instruction decoder

Instruction decoder

ALU VPU

Memory controller

Memory controllers

GDDR5 memory

~10

~60

Core

Core

CoreCore

Core

8
 s

im
ul

ta
ne

ou
s 

d
ou

bl
e-

p
re

ci
si

on
 o

pe
ra

tio
ns

Intel’s Xeon Phi is an accelerator card. Some 250 threads sharing 15
GB of memory.

The cores are not very fast, they are wide: Single Instruction
Multiple Data (SIMD) means code needs to be well vectorized.

Our demonstration code runs thousands of particles in parallel per
Xeon Phi and shares memory. We are projecting 50x speed up on
Helios Xeon Phi nodes.

Check out also LOCUST-GPU: Production ready code that runs on
NVIDIA’s GPGPU cards.
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Applying the formalism – if time permits

Example of using Langevin equation to solve FP equation

ASCOT – race track for fusion ions

Fusion alphas and ITER first wall

TBM mock-up experiments at DIII-D

Impurity injection experiments at AUG
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Summary

Pros and Cons of Langevin equation with MC

Solving the kinetic equation (here: FP) using the Monte Carlo method is
very easy and flexible.

HOWEVER,

in careless use, it suffers from the garbage-in, garbage-out syndrome.
Therefore, one should keep in mind at least the following:
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Summary

Fokker-Planck theory

Solving FP equation in particle picture is easy to formulate but
computationally very expensive – and, in most cases, solving the
gyro motion does not yield additional information

Solving FP equation in GC picture is computationally efficient but
comes at the price of mathematical complexity

In some cases, a hybrid picture is beneficial: e.g., when approaching
material surfaces, follow particles in both pictures and drop full orbit
when receding from the surface.

When introducing new operators in the FP equation, one should
always make sure that they can be written in divergence form



Guiding center Fokker-Planck theory and Monte Carlo method

Summary

High Performance computing

Your results can only be as good and reliable as your input!
Therefore, before carrying out the simulations check the following

The quality of your magnetic background: is the field divergence-free
and smooth? (Crazy ∇B -drifts are guaranteed to give crazy results)

Choose your interpolation routine carefully: you have to navigate
between requirements for accuracy and speed.

Check you orbit-following routine so that it conserves energy and
collisionless orbits in axisymmetric case (otherwise you get numerical
transport)

When moving to HPC platforms, check scalability and optimize the
code as well as I/O for that particular platform.


	Fokker-Planck theory and stochastic motion
	Motivation
	Derivation of Fokker-Planck equation
	Deboning the FP equation, Part I: the RHS
	Deboning the FP equation, Part II: the LHS
	Equivalence to a stochastic differential equation

	Guiding center formalism
	Motivation
	About Lie-transformations
	Guiding center Fokker-Planck equation

	High Performance computing
	Applying the formalism – if time permits
	Summary

