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Plasma Cross Section
(toroidal current in)

A tokamak needs an externally 
generated  “vertical field” for equilibrium.  
A purely vertical field will produce a 
nearly circular cross-section plasma.
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Tokamak Equilibrium Basics:  Need for a vertical field
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Good Curvature
• Stable to vertical mode
• Oblate plasma
• low beta limits

Bad Curvature
• Unstable to vertical mode
• Elongated plasma
• higher beta limits
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In actual tokamak experiments, external field is 
not purely straight but has some curvature to it
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In actual tokamak experiments, external field is 
not purely straight but has some curvature to it
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Field with curvature can be thought of as a 
superposition of vertical and radial field.

If plasma column is displaced upward, the force                   
J x B = IP x BRext

will accelerate it further upward.  Same for downward.

Alfven wave time scale:  very fast!

Vertical 
Instability
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Plasma with                         
current IP

Describe the plasma as a rigid body 
of mass m with Z position ZP.   
Assume time dependence eiωt

ZP

Equation of motion:

Circuit equation for wall:
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A nearby conductor will  produce 
eddy currents which act to stabilize  

Conducting wall
with dipolar current IC

-

+

inertia conductor external field

inductance resistance plasma coupling
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current IP

Conducting wall
with dipolar current IC

ZP Three roots:
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Introduce plasma velocity  VP = i ωZP to get a 3x3 
matrix eigenvalue equation for ω of standard form

+

-



Three roots:

These are high frequency 
(~10-7 sec) stable oscillations 
that are slowly damped by the 
wall resistivity

This is the unstable mode.  
Very slow (~ 10-1 sec), and 
independent of plasma mass.
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With only passive conductor, still an unstable root but much smaller.
Not on Alfven wave time scale but on L/R timescale of conductor.
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Plasma with                         
current IP

Conducting Wall
with current IC

ZP Three roots:

This “rigid” mode is easily stabilized by 
adding a pair of feedback coils of 
opposite sign, and applying a voltage 
proportional to the plasma displacement    
-or its time integral or time derivative (PID)
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Total stability is obtained by adding an 
active feedback system which only 
needs to act on this slower timescale.



To model this “vertical instability” in realistic geometry,  and take the non-
rigid motion of the plasma into account, we take advantage of the fact 
that the unstable mode does not depend on the plasma mass (or inertia), 
and the stable modes are very high frequency and low amplitude.
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We start with the basic MHD + 
circuit equations and apply a 
“resistive timescale ordering”

Introduce small parameter 1ε �
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To model this “vertical instability” in realistic geometry,  and taking the 
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fact that the unstable mode does not depend on the plasma mass (or 
inertia), and the stable modes are very high frequency and low amplitude.

2

( )

3 3
2 2

( , )

i

i i ij j i i i i
i j P

t

nM p
t

p p p J
t

d L I M I J G R R dR R I V
dt φ

η

η

≠

∂
= −∇×

∂
∂

+ •∇ +∇ = ×
∂

+ × =

∂ ⎛ ⎞+∇ = − ∇ +⎜ ⎟∂ ⎝ ⎠
= ∇×

⎡ ⎤
+ + + =⎢ ⎥

⎣ ⎦
∑ ∫

B E

V V V J B

E V B J

V V

J B

i i

We start with the basic MHD + 
circuit equations and apply a 
“resistive timescale ordering”

Introduce small parameter 1ε �

~ ~ ~ ~iV R
t

η ε∂
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V E∼ ∼

2ε

All equations pick up a 
factor of      , in all terms, 
which cancels out, except 
in the momentum 
equation, where the 
inertial terms are 
multiplied by          .

ε

2ε 13



To model this “vertical instability” in realistic geometry,  and taking the 
non-rigid motion of the plasma into account, we take advantage of the 
fact that the unstable mode does not depend on the plasma mass (or 
inertia), and the stable modes are very high frequency and low amplitude.
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We start with the basic MHD + 
circuit equations and apply a 
“resistive timescale ordering”

Introduce small parameter 1ε �

~ ~ ~ ~iV R
t

η ε∂
∂

V E∼ ∼

2ε

This allows us to drop the 
inertial terms in the 
momentum equation, and 
replace it with the 
equilibrium equation.

Huge simplification…. 
removes Alfven timescale

0
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To model this “vertical instability” in realistic geometry,  and taking the 
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This is the set of equations we 
solve to simulate control of the 
plasma position and shape.   

There are 3 production codes that 
solve these nonlinear equations in 
2D and are used to design and 
test control strategies.

• TSC1 (PPPL)
• DINA         (Russia)
• CORSICA  (LLNL)
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Grad-Hogan Method

H. Grad and J. Hogan, PRL, 24 1337 (1970)

1Can also be run in a mode with plasma mass



Time sequence of using the TSC code 
to model the evolution of a highly 
elongated plasma in the TCV 
tokamak.

At each instant of time, the vacuum 
vessel is providing stabilization on the 
fast (ideal MHD) time scale.  The 
external coils are both feedback 
stabilizing  the plasma and providing 
shaping fields as they slowly elongate 
it to fill the entire vessel.

In this case, there were 4 PID 
feedback systems corresponding to:

• Vertical position
• Radial position
• Elongation
• Squareness

Marcus, Jardin, and Hofmann, PRL, 55 2289 (1985)
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Codes can also accurately 
model the current drive action 
of the OH coils.

Simulation of flattop phase of 
a basic tokamak discharge.

(a) At start of flattop, OH coil 
has current in same 
direction as plasma current

(b) Flux in plasma uniformly 
increases due to resistive 
dissipation.  OH and 
Vertical field coils adjust 
boundary values so flux 
gradient in plasma remains 
almost unchanged.

(c)  At end of flattop, OH coil 
has current in opposite 
direction as plasma 
current.

Vertical 
field coil

OH 
coil

φ= ∇ ×∇ΨPB
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PF5

OH PF1AL

PF1AU

PF3L

PF3U
Simulation of NSTX discharge evolution

As a validation exercise, we have simulated 
the evolution of a NSTX discharge using the 
experimental values of the coil currents as 
the preprogrammed currents.

To control the plasma in the simulation, 
several feedback systems need to be 
added to the coil groups.   The “goodness” 
of the simulation is measured by how 
small the current in these feedback 
systems is to still match other measured 
quantities (such as the flux in flux loops).

In general, we find that if we can match 
the plasma density and temperature 
evolution, then we can predict the plasma 
current evolution very accurately.

( ) ( ) ( )i PP FBI t I t I t= +



IOH vs time IPF3U vs time

IPF3L vs timeIPF5 vs time

IPF1AU vs time

IPF1AL vs time

Simulation IOH has feedback added to match experimental plasma current IP
Simulation IPF3U and IPF3L have vertical stability feedback added

Simulation IPF5 have radial feedback system added

experiment
simulation



PF5

OH PF1AL

PF1AU

PF3L

PF3U

Red are simulation flux loop data and green are 
experimental data.  Origin of each curve is 
approximate position of flux loop around machine. Excellent agreement!
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In 2D (axisymmetry) we can use nonlinear MHD codes to 
accurately model the position, shape control, and current control 
feedback systems in tokamaks, and these codes are routinely 
used in the design and optimization of all tokamaks   
….including ITER.

The next question is:   How effective can similar codes be for 3D 
instabilities?

We have a SciDAC1 center devoted to answering this question.

1Scientific Discovery through Advanced Computing

22

Summary of Material Presented.



Center for Extended MHD Modeling
S. Jardin PI     
2001-2010

GA: V. Izzo, N. Ferraro
U. Washington: A. Glasser, C. Kim
MIT: L. Sugiyama, J. Ramos
NYU: H. Strauss
PPPL: J. Breslau, M. Chance, J. Chen, S. Hudson
TechX: S. Kruger, T. Jenkins, A. Pletzer
U. Colorado: S. Parker 
U. Wisconsin: C. Sovinec , D. Schnack
Utah State: E. Held

a SciDAC activity…
Partners with:
TOPS
ITAPS
APDEC
SWIM
CPES

NIMROD and M3D codes  
(+ new code development 
such as M3D-C1 code)
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3D 2-Fluid MHD Equations in a Magnetized Torus:
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No further approximations!  
Solve these as faithfully as 
possible in realistic geometry
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R

In 3D, we cannot generally 
ignore inertial terms.    Very 
stiff system of equations     
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3D 2-Fluid MHD Equations in a Magnetized Torus:
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No further approximations!  
Solve these as faithfully as 
possible in realistic geometry
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In 3D, we cannot generally 
ignore inertial terms.    Very 
stiff system of equations     
=> implicit methods 25



Implicit Methods for Wave Equations-1
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wave equation:

In order to solve this with a large stable time step, we must 
evaluate the spatial derivatives at the advanced time
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Way too restrictive!

  zone size
  time step
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There is a technique now used by 
most of the major 3D codes for 
solving this system efficiently.
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Implicit Methods for Wave Equations-2
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Define the second 
derivative operator:
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The implicit algorithm for the wave equation can then be written as:

Well conditioned, diagonally 
dominant operator.

These two equations can 
be solved sequentially!

Implicit Methods for Wave Equations-3
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is the self-adjoint ideal MHD operator

Here,

Implicit Methods for Wave Equations-4

Apply this same technique to the 3D MHD equations: 



Accuracy and Spectral Pollution

30

Because the externally imposed toroidal field in a tokamak is very 
strong, any plasma instability will slip through this field and not 
compress it.  We need to be able to model this motion very 
accurately because of the weak forces causing the instability.
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In M3D-C1, we express the 
velocity  and magnetic fields 
as shown:    

Consider now the action of the first 
term in V on the external toroidal field:

The unstable mode will 
mostly consist of the 
velocity component U.

The velocity field U does 
not compress the 
external toroidal field!

( , , )R Zφ



Status of ELM1 Calculations

31
1Edge Localized Modes

• Recent verification studies have shown that the codes NIMROD and    
M3D-C1 can reproduce the stability results of specialized linear ideal-
MHD codes in the ideal limit

ideal limit:  
plasma resistivity 0.
vacuum region resistivity ∞, 
vacuum region density 0

• Nonlinear ELM simulations with M3D reproduce many experimental 
signatures of the ELM
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Linear ELMs:  Code Verification-1

dens8

Both NIMROD and M3D-C1 have 
performed detailed benchmarking for 
ELM unstable equilibrium in the ideal limit
against GATO and ELITE up to n=40

• required discontinuous η and ρ profiles 
with jump of 108 Ferraro

Burke



Studies have been extended to:
• diverted equilibrium (JT-60)
• finite resistivity in the plasma and SOL
• realistic density profiles

Close-up showing M3D-C1

triangular adaptive mesh
Ferraro
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Linear ELMs:  Code Verification-2



Comparison of eigenfunctions of normal plasma displacement for 
“ideal limit” and more realistic Spitzer resistivity with SOL with M3D-C1

Ideal MHD limit Sptizer resistivity with SOL 34

Linear ELMs:  Code Verification-3



Plasma burst outboard, midplane n reduced

Density to outboard divertor

Inboard edge instability

Density to inboard divertor

γ

Outer div
Inner div

time (τA) 

Multi-stage ELM – DIII-D 119690

Poloidal rotation (?) 

Sugiyama

Linear mode growth and mode consolidation
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Non-linear ELM simulation with M3D
Full simulation of nonlinear 
ELM event shows complex 
structure with secondary 
instabilities



Initially many unstable linear modes.   
These rapidly consolidate into lower-n 
field-aligned mode  ``filaments''  
(n=6-10 at t=43) 

Similar to what is seen experimentally.

n
pert

n

ψ-pert

u

RJφ

First 50 τA: linear mode growth 
Nonlinear harmonic consolidation

Sugiyama
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Early time: T and n  ballooning in rapid burst

T

n

t=21.5 τA 42.8 62.3 83.4 104.6

Sugiyama
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Longer time: T

t=43 126 227 461 529

Sugiyama
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Longer time: n

t=43                    126                   227                    461                    529

Sugiyama
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S=108S=107S=106S=105

• M3D-C1, is now being used for linear physics 
studies in NSTX, CMOD and ITER

• high order C1 finite elements, adaptive mesh, 
and fully implicit time advance allow high 
resolution studies of localized modes

• Now being used to study tearing (and double 
tearing) modes at realistic S values, including 
pressure (Glasser) stabilization

(Top) Equilibrium current density 
with adaptive mesh superimposed. 

(Left) perturbed current density for 
(1,1) tearing mode at different S.  
Rightmost figure corresponds to 
NSTX parameters

40

High-S tearing mode studies



n=1 Double Tearing Mode in NSTX….S = 108

q-profile Toroidal current Vorticity Normal displacement
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ECCD Stabilization of NTM

NIMROD code calculates 
the MHD growth of NTM c

GENRAY code computes 
wave induced ECCD 
current drive term 

Code coupling provided by SWIM framework

Jenkins
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Results to date are for an equilibrium that is tearing 
unstable and using a model toroidally localized CD term

Close up

Model current drive source applied 
to original O-point in 1 toroidal 
location.

(2,1) island shrinks, becomes (4,2)

(4,2) island shrinks, (2,1) grows

New (2,1) 900 our of phase with old

Jenkins
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(2,1) islands grow up 
again after  (4,2) island 
has been suppressed;
new islands are 90° out 
of phase  (poloidally) 
from the old ones.

As RF suppresses the original islands, new islands arise

Jenkins
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CDX-U Nonlinear Sawtooth Benchmark 
demonstrated good agreement between M3D and 

NIMROD for 3 sawtooth cycles

• Figure shows kinetic energy vs time for each of first 10 toroidal modes for 
nonlinear NIMROD and M3D calculations with same initial conditions, 
sources, and boundary conditions

• Codes now are in very good agreement in most all aspects (difference in 
n=0 energy due to different treatment of equilibrium in the 2 codes)

• Times t1 and t2 displayed in next vg

t1 t2 t1 t2

Breslau and Sovinec



CDX-U Nonlinear Benchmark - 2
Flux surfaces (Poincaré plots)

Temperature contours

t=t1 (NIMROD)

t=t1 (NIMROD)

t=t2 (NIMROD)

t=t2 (NIMROD)

t=t1 (M3D)

t=t1 (M3D)

t=t2 (M3D)

t=t2 (M3D)

Breslau and Sovinec46



NIMROD is being used to study Giant 
Sawtooth in DIII-D

• Hybrid particle/fluid model in NIMROD and M3D

• Shows clear stabilizing effect due to energetic particles, but do not yet 
have detailed agreement with experiment.

Schnack
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Study of saturated mode in NSTX-Motivation

NSTX shot 124379 has a steadily growing 2,1 mode with no 
apparent trigger seen by the USXR, Dα, or neutron diagnostics.

Gerhardt
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Eigenfunction Analysis of Multichord Data 
Suggests Coupling to 1,1 Ideal Kink

2,1 only 2,1 + 1,1 pert

Gerhardt
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Plasma State

Equilibrium and 
Profile Advance

3D MHD

TSC

Driver and Framework

Define and 
monitor jobs 
and manage 
data

M3D-C1

Now using the SWIM framework to run the free boundary 
transport code, TSC, using experimental coil currents, and 

TRANSP Neutral Beam package and monitor stability.

trxpl
Exp data 
(TRANSP)

Linear Stability

PEST-I,II

JSOLVER

Compute NBI 
and α-sources

NUBEAM

NOVA-K

M3D
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PF5

OH PF1AL

PF1AU

PF3L

PF3U

Red are simulation flux loop data and green are 
experimental data.  Origin of each curve is 
approximate position of flux loop around machine.



4MW of beams is applied from 
the beginning, but the low 
initial density leads to initial 
shine-through

This is the time and the q0 value 
when the instability sets in



M3D simulation of saturated mode in NSTX when q0 > 1

Saturated n=1 mode can set develop when q0 slightly > 1, as seen in Poincare 
plot on left.  Can flatten temperature (right) and also drive m=2 islands.    
Breslau, et al.  IAEA 2010
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VDE1 and Plasma Disruption simulations in ITER

1Vertical Displacement Event

(a) Poloidal flux, (b) toroidal current, and (c) temperature during 
a vertical displacement event.  A VDE brings the plasma to the 
upper wall where a (m,n) = (1,1) kink mode grows.   Forces on 
the vacuum vessel are calculated.
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Runaway electron evolution in disrupting plasma is computed.

Simulation of DIII-D Ar pellet experiments.  Runaway electrons of 
different energy shown.  Synchrotron emission on right.

Izzo



Error Field study

( ) ( )0, cos 2boundaryψ θ ϕ ψ ϕ θ= −� �
qmin = 1.067 qedge ~ 4

Non-linear non-ideal M3D code has been 
used to extend the IPEC results:

• Islands growth due to error fields in the presence of rotation is found to be 
very complex.  Requires accurate model of viscous damping, etc.  Still under 
investigation.

Breslau
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Summary
• 2D studies
• Edge localized modes (ELMs)

– Linear benchmarking
– Nonlinear evolution (with CPES)

• Tearing modes
– Linear studies at high S
– Nonlinear evolution and stabilization (with SWIM)

• Sawtooth and other (1,1) modes
– Nonlinear benchmarking study with CDX-U
– Approach to mode onset in NSTX (with SWIM)
– Giant sawtooth in DIII-D

• Disruptions and resistive wall mode (RWM) 
• Error field studies
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