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• Essential role played by intermittent and large scale structures ("blobs") in the 
cross-field energy and particle transport to the wall in the far Scrape-Off-Layer 
(SOL) 

• From many experimental studies carried out in several machines (toroidal : Tore-
Supra, W-7AS, Alcator-C, NSTX, D-IIID, … and linear machines as well  

 -  radially propagating "blobs" are responsible for  ~50% of the transport 

 - Study of statistical properties  signature of intermittency and "blobs" and  of 
self-similarity (Hurst parameter ⇒ long-range correlations, SOC models?, …) 

• Open questions: 

 - Origin and formation of the "blobs" (core plasma, relation with ELMs?, near the 
separatrix, inverse cascade process?), propagation velocity, time and size scales,  

  need for Diagnostics (probes arrays, imaging, …),  signal processing methods, 
comparison with numerical simulations, … 

Turbulence and transport in the Scrape-off-Layer of 
Tokamaks 
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Time-series analysis (probe data) 
Data in the form of time series are collected from a turbulent process ⇒  

How can we extract  information from these time series 

• Statistical Analysis → stationary stochastic processes 

• Fourier  Methods  =  projection on an orthogonal basis,  
but with infinite support  ⇒    Limitations 

 "Classical“ Methods = 

are inadequate 

Experimental data 
from tokamaks 

Intermittency, non linearity ⇒ 
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Tore-Supra (Shot #35000) 

2B Isat, 

xm = 0,0822 

σ = 0,0118 

2B Isat, 

xm = 0,072 

σ = 0,0094 

2B Isat, 

xm = 0,0551 

σ = 0,0076 

2B Isat, 

xm = 0,0144 

σ = 0,0023 



G. Bonhomme 1st ITER Summer School, Aix-en-Provence, 16-20.07.2007 

Tore-Supra Shot #35000 

Analyzed signals: Isat_2A et Isat_2B  
for r = 15, 20, 35, 70 mm (distance to LCFS) 

I1A-I2A  I2A-I3A  I1A-I3A  

I1A-I2A  I2A-I3A  

Cross-correlations r = 15 mm 

Cross-correlations r = 70 mm 

Non Gaussian PDF 
related to 
intermittency 
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Tore-Supra Shot #35000 

2B Isat, r = 70 mm 2B Isat, r = 35 mm 2B Isat, r = 20 mm 2B Isat, r = 15 mm 

Autocorrelations and Fourier spectra  
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Tore-Supra Shot #35000 

2A Isat, r = 70 mm 2A Isat, r = 35 mm 2A Isat, r = 20 mm 2A Isat, r = 15 mm 

Autocorrelations and Fourier spectra  
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Drawbacks of Fourier methods 

Fourier transform definition: 

⇒ F (ω) complex ⇒ lnformation on time localisation contained in the phase    

          ⇒   difficult access 

• Example 1 → A musician playing either successively two ≠ notes, or                                      
 simultaneously these two notes ⇒ same amplitude spectra   
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Solution: Wavelets? 

• Short-time (or windowed) Fourier transform   

        → (DFT of sub-series)  ⇒  Pb : frequency resolution ∆ν = 1/T  
 
                                                                     the  time resolution is the same 
                                                                     at all frequencies 

 

 

• Wavelet transform = generalization of the Fourier analysis 

        → change for an other analysis  function 
        giving a  time resolution depending 
        on the frequency 
 

 
 

 ⇒  find an orthogonal basis localised in time and  frequency 
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Intermittency between two modes 

Time-frequency representation (Morlet) 

Ionization waves in a glow discharge (I = 3 mA) 

f1 = 1.05 kHz, f2 = 1.55 kHz 
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Periodic pulling 

A=1., ε =1. 
ω1 = 1.2 
"VdP1.0-1.2" 

a simple model: the forced van der Pol oscillator 

K-H instability 
Ud=50 volts 
Time series "y5a02" 
at r = 4 cm (in the 
shear layer) 

( ) ( )tAxxxx 1
2
00 cos1² ωωωε =+−+ 
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Wavelet Analysis 

• Principle of the wavelet transform:  
    replace the sine waves of the Fourier decomposition by orthogonal basis 

functions localised in time and  frequency 
 
• Aim : Decomposition of a signal into components (small waves, i.e.       

wavelets) corresponding to : 
          ≠ scales or levels (i.e., frequencies) and 
          ≠ localisations for each of these scales 
 
→ Two  different approaches : 
•  Continuous Wavelet Transform (e.g. Morlet) → time-frequency analysis 
•  Discrete Wavelet Transform → orthogonal decomposition (filtering) 
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The Continuous Wavelet Transform 

Principle :  mother-wavelet ϕ(t)  ⇒ 

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• pulse 

• chirp 

Time-frequency analysis 
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The Morlet Wavelet 
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The Discrete Wavelet Transform 

Drawbacks of the continuous wavelet transform :  redondancy, CPU time, 
admissibility conditions non completely fullfilled (Morlet) 

Solution ? Discrete Wavelets (similar to the DFT) 

• Octave scaling →   
   Tj = 2j et t0 j,k = k/ 2j 
 
 

• orthogonality 
 

with 
 
There are 2m base functions at the m level 
 
 
• reconstruction 
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Wavelet construction: Daubechies wavelet 

Φ(t) for r=2  (from Newland [1]) 
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• Haar 
                                                 

 lack of regularity  ⇒ 

 

• Daubechies wavelets 
  - must be determined by recurrence from a scaling function  Φ(t) 

    (Meyer, 1993)     

  - they are completely defined by the coefficients ck 

     2r+1 conditions must be satisfied:  
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Mallat tree (pyramid algorithm) 

from Newland [1] 

  Solutions : 
• Haar (r=1) → c0 = c1 = 1 

• Daubechies D4 (r=2) →  

• r > 3, (numerical computation) → discrete transform (computed by using the  
Mallat algorithm)  →  analysis, and  reconstruction  formula  →   synthesis 
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Practical considerations (1) 

• The Continuous Wavelet Transform (Morlet): 

FFT computation of 

Practically  f={fn} et N=2m                                                               ⇓ 

                                         ⇓ 

                                                                             

 

⇒ Oversampling of F(ω) required 
  solution = zero padding of  fn (for T=NTe → (N-1)N zeros) 
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See for example, D. Jordan et al, Rev.Sci.Instrum. 68 (1997) 1484-1494 
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Practical considerations (2) 

• Discrete Wavelet Transform:    → pyramid algorithm (no need for the W(t))  
   ½L3                               ½ H2                           ½ H1    example :           f=f(1:8) ———→ f'(1:4) ———→ f'(1:2) ———→ f'(1) 
                           ↓ ½ H3                 ↓ ½ H2                        ↓ ½ H1                       ↓  

                            a[5:8]                  a[3:4]                     a(2)                  a(1)  

Hn et Ln are matrices build directly from the ck coefficients (cf. Newland [1]) 
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Times-series and self-similarity properties 

Scale Invariance → self-similar stochastic process 

• Definition and properties:  
• Power spectrum                                 γ characteristic exponent 

• Algebraic decay of the autocorrelation function 

                                 with H  Hurst exponent, γ = 2H + 1  

                                                ⇒   x(t) et x(at)  have the same statistics  

  

• constant correlation between past and future increments at all time:  

 

• Examples:    * Gaussian white noise  →  (γ = 0)   H = - 1/2 
                              *  Fractional Brownian motion  (fBm) 1< γ<3  →  0 <H < 1 
                               Random walk (H = 0.5), 1/f  processes,   S.O.C.   
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R/S analysis and the Hurst exponent (1) 

The rescaled ranged statistics (R/S) method was proposed to evaluate the Hurst 
exponent (H ) to determine long time dependencies in various signals.  

From a time series X of length N, sub-blocks of length n : X = {Xt: t = 1,2,…n}  

are build to compute (with                                                     ): 

)(
),,,,0min(),,,,0max(

)(
)(

2
2121

nS
WWWWWW

nS
nR nn  −
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X = increments (fGn) of self-affine data (e.g., fractional Brownian motion)  
                      R/S ~  c nH  
 
For uncorrelated data                   H = 0.5    ( X  =  time-series of a white noise)      
                                             If     H < 0.5                    antipersistence 
                                             If     H > 0.5                      persistence 

mean 

variance 
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R/S analysis and the Hurst exponent (2) 

R/S 

H=0.35 
γ=1.73 

Example: the Xi are the 
increments (time 
derivative) of a 
fractional Brownian 
motion (fBm)  

      with H = 0.35 

γ = 2H + 1 

   Drawback of the method: H must be in the range [0-1]  ⇒ γ = 2H + 1 in the range:  
    [1, 3]  (R/S analysis on increments) or  [-1,+1]  (R/S analysis on signal) 
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Fractals and Wavelets  

 
• Discrete wavelet transform 
       octave scaling →   Tm = 2m-1   ⇒    with τj = 2j-1 

log(varxn
m) 

m 
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Wavelets are self-similar by nature 
 Mother-wavelet ϕ(t)  ⇒                            translation + dilatation 
 

• The wavelet variance is a very useful alternative to spectral density function,  
  and R/S analysis 
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Wavelet variance (DWT, Daubechies D20) 

Brownian motion (H = 0.5) 

H = 0.5 

Variance of wavelet coefficients 



G. Bonhomme 1st ITER Summer School, Aix-en-Provence, 16-20.07.2007 

SOL turbulence (Tore-Supra data) 

Tore-
Supra: 
 shot  
 #22253 

Two distinct behaviors can be seen on the spectrum:  
• before breakpoint  (BF)  signal ~  fGn 
• After breakpoint (HF)    signal ~ fBm 

H1 = 0.57 

H2 = 0.57 

  Signal: H1 =  0.57              Increments H2 = 0.57 

PDF 

Question :  
Why such a relationship ? 

γ3 = 2.15 

γ1 = 0.15 

γ2 = 1.4 
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Tore-Supra (Shot #35000) 

2B Isat, 

xm = 0,0822 

σ = 0,0118 

2B Isat, 

xm = 0,072 

σ = 0,0094 

2B Isat, 

xm = 0,0551 

σ = 0,0076 

2B Isat, 

xm = 0,0144 

σ = 0,0023 

γ=2H+1=1.50 

γ=1.74 

γ=1.78 

γ=1.84 
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Continuous wavelets: Time-frequency analysis 

Pivoine data 
(from A. Lazurenko) 

Time-frequency representation obtained with Morlet wavelets 

Fourier spectrum 

Drawback → cpu time demanding (because high level of redundancy) 
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Discrete wavelets: Analysis and reconstruction 

Analysis 

Synthesis 

Daubechies wavelets 

Efficient 
algorithmn, 
But: 
- physical 
meaning of 
the filtering? 
- not well 
suited to time 
frequency 
analysis 
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The Hilbert-Huang Transform 
 or Empirical Mode Decomposition 

•  Decomposition  of a non stationary time-series into a finite sum of orthogonal 
eigenmodes, or Intrinsic Mode Functions (IMF). 

•  Self adaptive approach in which the eigenmodes are derived from the specific 
temporal behaviour of the signal. 

•  Subsequently, the Hilbert Transform can be used to compute the instantaneous 
frequency and a time-frequency representation of each mode as well as a global 
marginal Hilbert energy spectrum. 

N. E. Huang et al., The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and 
Non-Stationary Time Series Analysis, Proc. R. Soc. London, Ser. A, 454, pp. 903-995 (1998).  

T. Schlurmann, Spectral Analysis of Nonlinear Water Waves based on the Hilbert-Huang 
transformation, Transactions of the ASME Vol.124 (2002) 22. 

J. Terradas et al, The Astrophys. Journal 614 (2004) 435. 
P. Flandrin, G. Rilling, P. Gonçalves, Empirical Mode Decomposition as a Filter Bank, 
 IEEE Sig. Proc. Lett., Vol.11, N°2, pp. 112-114 (2004). 
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Hilbert Transform and instantaneous frequency 
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Hilbert transform of a data series x(t) is defined by:  

But in most cases the instantaneous frequency 
                              has no physical meaning 

Example 

By substituting    we can define 
z(t) as the analytical signal of x(t) 

dt
tdt )()( θω =

Impossible d’afficher l’image.

⇒ Empirical Mode Decomposition 
set of IMF : (1) equal number of extrema 
 and zero crossings; (2)  mean value of the  
 minima and maxima envelopes = 0 

from Huang et al 
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IMF = Intrinsic Mode Functions  

)()()(
1

trtimftX
n

j
nj∑

=

+=

1.  Initialize : r0(t) = X(t), j=1 
2.  Extract the j-th IMF: 
 a) Initialize h0(t) = rj(t), k=1 
 b) Locate local maxima and minima of hk-1(t) 
 c) Cubic spline interpolation to define upper and lower 
              envelope of hk-1(t) 
 d) Calculate mean mk-1(t) from upper and lower enve- 
              lope of  hk-1(t) 
 e) Define hk(t) = hk-1(t) - mk-1(t) 
 f) If stopping criteria are satisfied then imfj(t) = hk(t) 
             else go to 2(b) with k=k+1 
3.  Define  rj(t) = rj-1(t) - imfj(t)  
4.  If  rj(t)  still has at least two extrema then go to  2(a) with 

j=j+1, else the EMD  is finished 
5.  rj(t) is the residue of x(t) 

The Empirical Mode Decomposition (sifting process) 

⇒ 
A typical 
IMF 

from Huang et al 
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Analysis and Reconstruction (Plasma thruster data) 

Analysis Synthesis 
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Completeness and Orthogonality 

Example (from Huang et al) 

The orthogonality is satisfied in practical sense, 
 but it is not guaranteed theoretically 

The completeness is established 
 both theoretically and numerically  

IO = overall index of orthogonality 

for this example IO = 0.0067 

or for two IMF: 
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Degree of stationarity 

The degree of stationarity DS is defined as: 

with       mean marginal spectrum  

and the degree of statistic stationarity DSS 
can be is defined as: 

If the Hilbert spectrum depends on time, the index will not be zero,  
then the Fourier spectrum will cease to make physical sense.  
The higher the index value, the more non-stationary is the process. 
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Marginal Hilbert spectrum vs Fourier spectrum 

Because of the strong 
nonlinearity of HF 
oscillations the Fourier 
spectrum exhibits many 
peaks  
All these peaks do not 
correspond to actual modes 

A peak in the marginal Hilbert spectrum 
corresponds to a whole oscillation around zero 
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Application to experimental time-series (Plasma Thruster) 

IMF 9 

IMF 1-4 

Marginal Hilbert Spectrum 

Analyzed Signal 

J. Kurzyna et al.,  
submitted to Phys. of Plasmas  



G. Bonhomme 1st ITER Summer School, Aix-en-Provence, 16-20.07.2007 

Comparison with wavelet time-frequency analysis 

Morlet → freq. = 375/scale ⇒ 33 ↔ 11.4 MHz 
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 The Hilbert-Huang Transform method: 
• Has proven to be a promising and attractive method to analyze non 

stationary and nonlinear time-series because of: 
 - a very efficient ability  in filtering different physical phenomena 
 - accurate time-frequency representation  
 - moderate cpu time consumption and ability to analyse long time 

series 
• Some improvements would be useful, e.g., Hilbert spectra 

representation 

Conclusions and Perspectives 
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Linear spectral analysis tools 

The classical Fourier analysis tools are redefined in terms of wavelets: 
 
    in order to obtain statistical stability, the appropriate combinations 
    of wavelet coefficients are integrated over a small finite time interval 
      
         f (t ) is digitally sampled on [0, N Ts ] 
    
• Wavelet spectra and coherence 
 
 
• normalized delayed wavelet cross coherence 
                 
              →  estimate of   
      the statistical   
      noise level  
        
 
      where                                           is the wavelet auto-power spectrum 
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Joint wavelet phase-frequency spectra 

  
• The Joint wavelet phase-frequency spectrum S (φ, ω) is obtained by  
   calculating the quantity: 
 
   for a number of values of a and τ, with fixed ∆ τ  
 
   ω = 2π/a  and φ phase of c   → plot in the (φ, ω)-plane 
 
 
     ⇒   insight into the frequency-dependent phase relations that may exist 
           between f and g  (usually two spatially separated measurements of the same quantity) 
 
       
moreover (if homogeneous turbulence) 
                                                    →  related to the dispersion relation ω(k)  
                                                          for the process driving the turbulence 

τ)τ,(τ),( ∆+= ∗ aWaWc gf
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Non linear spectral analysis tools 

Non linearity requires proper spectral analysis tools : 
 The Fourier method is based on the third-order spectrum 
                                      where   ω  = ω1 + ω2  and <.> = ensemble average 
 
• Wavelet cross bispectrum  
 
• Wavelet cross bicoherence (normalized squared cross bispectrum) 
        
 
 
 
  
• Wavelet auto bispectrum and auto bicoherence  
  and  
 
•The bicoherence is a measure of the amount of phase coupling that occurs in a signal 
or between two signals. Advantage of wavelet bicoherence → ability to detect temporal 
variations in phase coupling (intermittent behaviour) 

ττ),(τ),(τ),(),,( 21021 daWaWaWTaaB gg
T

f
W
fg ∫ ∗=

( )
),(τ)τ,()τ,(

),,(
),,(

0

2

21

2

0212
021

TaPdaWaW

TaaB
Taab

W
f

T
gf

W
fgW

fg









=

∫
),,(),,( 021021 TaaBTaaB W

ff
W =

( ) ( )2
021

2
021 ),,(),,( TaabTaab W

ff
W =

)ω()ω()ω()ω,ω( 2121 GGFBfg
∗=



G. Bonhomme 1st ITER Summer School, Aix-en-Provence, 16-20.07.2007 

Bicoherence as a Fourier tool 

From Van Milligen, Wavelets in Physics, edited by J. C. Van Den Berg, 
(Cambridge University Press, 1999) 
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Example: coupled van der Pol oscillators (1) 
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Chaotic state: 
 ε1 = 1.0   α1 = 0.5 
 ε2 = 1.0   α2 = 1.75 

Periodic state: 
 ε1 = 1.0   α1 = 0.49 
 ε2 = 1.0   α2 = -1.75 
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Example: coupled van der Pol oscillators (2) 

Summed bicoherence 

Fourier Bicoherence 

Chaotic state: Periodic state: 
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Example: coupled van der Pol oscillators (3) 

From van Milligen 

Periodic state:  ε1 = 1.0  ε2 = 1.0  α1 = 0.5  α2 = -1.75 

The bicoherence allows 
the determination 
 of the driving 
frequency. 
  i.e., peak at f = 0.34  
         in the spectrum 

⇐ Average phase relation between the two coordinates 
of one oscillator at every frequency ⇒ low-dimensional 
attractor 



G. Bonhomme 1st ITER Summer School, Aix-en-Provence, 16-20.07.2007 

Bispectrum of a spatial series S(x) : 
 
 
Ws(a,X)= wavelet transform of S(x). 
a, a1, a2 = wavelet scales such that 1/a = 1/a1 + 1/a2 

 
 
BW is a measure of the degree of nonlinear coupling between 3 waves 
satisfying  the resonance condition : 

     ω1 + ω2  = ω3 
      k1 + k2   = k3 
     Φ1 + Φ2  = Φ3 + const 

Bicoherence analysis 

n=64, Fech =1.25 MHz  

F. Brochard et al., Phys. Plasmas 13, 122305 (2006). 
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Normalization of the bispectrum => Autobicoherence (bicoherence) 
 
 
    0 ≤ [bW (a1, a2) ]2 ≤ 1 
    
 
        

Bicoherence  

  
Summed 
Bicoherence 

  Auto-
Bicoherence 
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Summed Bicoherence    
     
         allows to determine the coupling direction 

Total bicoherence 
     
     gives an indication on the amount of nonlinear coupling 
 

Staistical noise: 
          

        =>  depends on the scale 1/k 
 

Bicoherence  
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Weakly turbulent state (drift waves) in the Vineta device 
 

 Density fluctuations  Time-series and PDF 

Results: dynamical analysis  

F. Brochard et al., Phys. Plasmas 13, 122305 (2006). 
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Results : dynamical analysis  

More details are seen in the k spectrum than in the frequency 
spectrum (wavelet spectra). 
 

       Time/frequency spectrum  Time/wave number spectrum 
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Results : dynamical analysis  

The temporal evolution of the k total bicoherence shows bursts on small 
time scale (too small to be detected from a frequency analysis (~ T/10). 

Statistical noise 
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Results : dynamical analysis 

Zooming a bicoherence burst: comparison spectrum/summed bicoherence 
=> a m = 3 mode is created through mode coupling. 
 
 
 
 
 
 
 
 
 
   F. Brochard et al., Phys. Plasmas 13, 122305 (2006) 
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Experimental Setup: the MIRABELLE device 

• Argon plasma 
• B = 0 – 130 mT 
• P ~ 0.5-5 E-4 torrs 

• Te ~ 1 – 3 eV , Ti ~ 0.02 eV 
• ne ~ 1015 – 1016 m-3 

• ρS ~ 0.5 – 3 cm 

Plasma typical parameters: 

8 plates 
Exciter 
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Spatiotemporal control of a weak turbulent state  

The exciter plates are localised 
outside of the plasma ⇒ no 
limiter effect. 

In Mirabelle, it is possible to select 
between "flute" modes (Kelvin-Helmholtz, 
Rayleigh-Taylor) at low field, and drift 
waves at high magnetic field. 

F. Brochard et al., Phys. Plasmas 12, 
062104 (2005). 

  

  
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Spatiotemporal control of a weak turbulent state 

Example 1 : forcing of a m=1 Kelvin-Helmholtz mode 

Filtering out the  conter-
rotation by using a 1st 
order band-pass filter 

A m=1 mode at Fex=4kHz is applied to a ~3 à 7 kHz 
irregular mode, for two rotation directions 
(amplitude 2V) 
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Spatiotemporal control of a weak turbulent state 

 Spatiotemporal effect 
 the m=3 mode is not totally suppressed. 
 k//=0 before and after control: same kind of 
mode. 
 in the counter-rotation case, the applied 
spatiotemporal structure is simply 
superimposed. No coupling. 

 

 
 Bicoherence analysis: coupling between Fex 
and the instability only if co-rotation. 

Bicoherence plot 
demonstrating the 
coupling between the 
forcing mode and plasma 
eigenmodes F. Brochard et al., Phys. Plasmas 13, 

052509 (2006). 
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Spatiotemporal control of a weak turbulent state 

Ex.2 : synchronisation of a m=2 mode (Kelvin-Helmholtz) 

Wavelet analysis showing 
the transition to the 
synchronized state 

Forcing of a m=2 at Fex = 7kHz on a m~3 at 7kHz 
(amplitude 1.2V) 
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Driving a Turbulent state  

The excitor can also be used  to drive more turbulent states, through nonlinear 
wave-wave coupling leading to spectral enlargment (Ruelle-Takens scenario). 

Generation of turbulence: Drift waves (left) and Kelvin-Helmholtz (right). The 
turbulence level depends on the amplitude of the applied signal on the exciter. 
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Fast camera data (test) 

Raw data taken in the 
Mirabelle device 
Drift wave, regular mode 

After 
substracting 
mean value 
at each pixel 

After 
wavelet 
processing 
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• Several methods are available 
• The choice of the best method depends on the kind of information we 

want to extract from the data  
• Fourier methods have many drawbacks when applied to non 

stationnary nonlinear signals 
• Wavelets based tools are very useful, and especially to measure self-

similiarity properties 
• Among the last introduced methods the Hilbert-Huang transform has 

proven to be very efficient in filtering 

Conclusions and Perspectives 
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