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1. Introduction



~  Micro-instabilities in tokamak plasmas

Magnetic drift

Q

A\

ExB drift

Unstable side given by
VT-VB >0

e Temperature gradient driven modes in tokamaks

— lon temperature gradient driven (ITG) modes &, '~p,

— Electron temperature gradient driven (ETG) modes k,*~p,, 4,
e Trapped particle modes, Electromagnetic modes, etc...



( )TG turbulence suppression by zonal flows

Toroidal ITG turbulence simulation with and without zonal flows

(Lin,Science98, Diamond,NFO01)
4

.’(ﬂ’ _.-;E'f'r'.
LINCPR R
W 0™

-

N
>
x
=
79}
>
=
©
]
@
o
<

time (Ln/Cs)
e Various zonal flow instabilities
(Diamond,IAEA98, Chen,POPO00, Rogers,PRL00)
e Nonlinear upshift of effective critical ITG by zonal flows
(Dimits,POP00)
e Linear damping mechanism of zonal flows
(Rosenbluth-Hinton,PRL98)




@) |

gucture formations in microscopic ETG turbulence

Toroidal ETG turbulence simulation in reversed shear tokamak
(|domura’NF05) ! = Safety factor Q(!//) = B¢/B¢9

\/

Zero shear Positive shee}w

e Enhanced transport by streamers in positive magnetic shear
(Jenko,POPOO, Dorland,PRL0OO)

e Transport reduction by zonal flows in reversed magnetic shear
(Idomura,NF05,POP06)

e Various secondary/tertiary instabllities for streamers/zonal flows
(Idomura,POPO00, Jenko,PRLO2, Holland,POPO02, Li,POP02)



Plasma size scaling of ITG turbulence

Transition of plasma size scaling from Bohm to gyro-Bohm

(Lin,PRLO2, Candy,POPO04)
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e Linear ballooning theory with equilibrium profile shear effects

(Connor,PRL93, Romanelli,PFB93, Kim,PRL94)

e Shearing effects of equilibrium ExB flows on size scaling

(Garbet,POP96, Waltz,POP02)

e Turbulence spreading into less unstable or stable regions

(Lin,POP0O4, Hahm,PPCF04, Waltz,POPO05)
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tulation for multi-scale tokamak micro-turbulence

Profile formation lon scale turbulence
~10cm,~10ms

Electron turbulence

~5mm,~1pus ~0.1mm,~10ns
turbulence = gq g,
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- spectral interaction

e Future issues addressed using first principle simulations
— Formation of transport barriers

— ITG-TEM-ETG, electromagnetic turbulence
— Edge/SOL turbulence

e Purpose of this lecture

— To explain physical and numerical models of GK simulations



2. Gyrokinetic model
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(!!vsical properties of turbulent fusion plasmas
/o Fusion plasma (n~10"m>3, T~10keV) is weakly coupled plasm
— Low collisionality ~1kHz, mean free path ~10km

— Orbit effects and wave-particle resonance are important

e Turbulent fluctuations are considered to follow the ordering
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~ Spatio-temporal scales in fusion plasmas

MHD model

Gyrokinetic model

micro
Cycrotron i bl
-
waves . lurbulence

Vlasov model

102 100 10°
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grlmitive Kinetic model of weakly coupled plasma

e Vlasov-Poisson system in canonical coordinates Z~(#,q,p)
| o OHe Of OHe O

=0 Vlasov Eq.
81 op 0q Oq Op

Poisson bracket

Hamiltonian

~Vip= 47ZZeSnS, n,= nos_[fsdp Poisson Eg.

— Continuity equation of f'transported by Hamiltonian flows in
6D phase space

— Spatio-temporal scales are given by ~4,,, and ~w,,



(r)okinetic model for tokamak micro-turbulence

MEEUCSUEEAEEEERREY (¢ Minimum scale of turbulence

lon lon ~Smm, Electron ~0.1mm
Force Electron e Fast gyro-motion is adiabatic
® Field B Gyrokinetics in 5D phase space

Fast gyro-motion ~1GHz + slow drift-motion ~100kHz
Gyro-motion is adiabatic (magnetic moment is conserved)

| Gyrokinetics>
Field line ) \ Gyro-radius

Gyro-centre orbit

6D phase space (R,v,, i @) 5D phase space (R,v,, 1)
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e Lagrangian in canonical coordinates Z =(t,q,p)

icle motion In quiding-centre coordinates

e Lagrangian in Z.=(tR:oVicotlcor %)
(Littlejohn, J. Math. Phys.79, PF81, J. Plasma Phys.83)

e
Vee = (;A + V//Gij dR ;¢ "' /UchaGc H ;.dt

1

H ;e (RGC’v//GC’:uGC’aGC) 5 mv//GC + e B+ e¢( GC luGC’aGC)

— Fast a-dependence in H . (1 IS approximate invariant)



~ Reduction of problem to 5D phase space

e Find gyro-centre coordinates Z ., using near identity transformations
(Cary-Littlejohn,Ann. Phys.83, Brizard-Hahm,Rev. Mod. Phys.06)
Zoy=T,Zso =Zse+6,G+- G, : generating vector

forZgy)= foeZoe )= foc (TfZGY): Tf..(Z.,) push-forward transform

Yoy =T, Ve +dS S :gauge scalar

e Lagrangian in gyro-centre coordinates Z.,=(t,R:y Voo Cay)
(Dubin,PF83, Hahm,PF88, Brizard,POP95, Sugama,POP00, Wang,PREO1)

o , 1
Loy =T, L, =2 +{S’ZGC}’ S :éj [¢_<¢>a]da , <¢>a Eﬂfﬂla

e mc
Yoy = (;A + V//Gybj -dR gy + ?IUGYdaGY —H g, dt

1
H sy (RGY Virgy » Hey ) = EmVIZIGY + Uy B + e<¢>a (RGY , IUGY)

- H,, becomes a-independent (x., Is exact invariant)
— 75y Keeps form invariance (canonical transform)



(.) Gyro-centre Hamilton’s equation

e Poisson bracket in Z,.and Z,
QO(0F 0G _0F 0G) B (. 0G 0F . |
B\oda du ou o«

mbB,, ov, O0v, eB,,

*

B=VxA, B=[B, b=B/B, B =B+—Vxby,, B)=
e

e Gyro-centre Hamilton’s equation
H :%mv,z, +yB+e<¢>
2={7,H}

R=B O My H =S “_bx(eV(g) +mvib-Vb+VB)

B, v eB eB,
e I g ExB| [curvature] [VB

(24

*

_.VH =- ’:B; (ev(g) +uvB)

E, mirror
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Wave particle resonant interaction excites micro-turbulence

Slab, toroidal, and trapped particle modes are excited by
passing motion, magnetic drift, and toroidal precession

-\ forlargev,/v,

) passing motion+

oo Trapped particles
2\ forsmallv,/v,
) bounce motion+




Gyrokinetic equation

e Gyrokinetic equation
{f H}= I R Vf +v, = I o

Ot ov),

e Conservative form of gyrokinetic equation
Dm’B, °B, s B,y

m"B, f _ om"B, f +V-(mZB,,Rf)+ om”B,v, f

Dt Ot ov,

e Phase space conservation

=0

V- (m?BR )+ %(mZB;\},, )=0
~ OH L m °c

m°B,R = mB" ——
av,, e

m’B,, : Jacobian of gyro-centre coordinates Z_.,

*B,v, =-mB -VH
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Poisson equation for self-consistent fields

® /.. obtained by pull-back transform

fGC(ZGC)E TngY(ZGC): fGY(ZGC)"'{S’fc;y}E fGY(ZGC)

Q 05 Oy
B 00 Ofge

e Poisson equation in Z -

~Vip=4z) enq)
n (q) = Py, j Jocs (ZGC )5[(RGC + P)— q]me;dZGC

= nosIfGYs (ZGC )5[(RGC + p)_ q]mszB;dZGC - e;i (¢ B <¢7>a)

S

<¢7>a = j<¢>a]%s5[(RGC +p)=qJm’BdZg.
— 2"d term shows polarization density due to FLR effect
e Gyrokinetic Poisson equation

~Vig+ ZS: 111-) (¢ - <(Z>a ): 4”; esnOsijYs (ZGC )5[(RGC T P)_ q]mszB;dZGc
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First principles in gyrokinetic equations

e Conservation of phase space volume

— particle number £, kinetic entropy flog( /), /2, etc...
e Energy conservation
dE, dE,

9,
ZjHl’l —m B//dZ—?‘I‘? =0

E, :ZI(Emsvf, +,qun f.m’B,dZ

Ef=£ﬂv¢‘2dx+£2;;t 11, (k2 07 Jexp(= k202 i f

19
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~ Summary of modern gyrokinetic theory

e Gyrokinetic Vlasov-Poisson system

— Spatio-temporal scales are given as ~p, and o << (2,
— Problem is reduced to 5D (4D hyperbolic PDE + 1D parameter)
— Keeps important kinetic effects (FLR, Landau resonance, etc...)
— Keeps all the first principles which the original system has

o Phase space conservation

o Conservation of particle number, kinetic entropy, etc...

o Total energy conservation

20



3. Various approaches in gyrokinetic simulations



<

rdinate system in tokamak configuration

e Tokamak configuration written using poloidal flux function v
B=VyxV(gd-¢) q(w)=B-Vo/B-VO, 0O:straight field line angle

e F[ield aligned flute perturbation with &,~0 (gyrokinetic ordering)
l//’ 9 ¢ Z¢mn exp lme—lngﬂ)

m,n

B-V¢=B-VOY i(m—nq),,(y)exp(imd—inp)~0

m,n

— Components far from m~ng suffer from Landau damping
e Quasi 2D representation of flute perturbation

$w.0,0)= Z 8, (v, 0)explinlg6 - ¢))

— Field-line-following coordinates
(w.0.s)

— GK equation can be further
reduced to quasi-3D+1D

22
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e Global gyrokinetic simulation
of
— H{=0
Ly iy}
— Keep all the first principles
— Both f; and of are solved self-consistently
— Full (annular) torus calculation with fixed B.C.

— Benchmark is difficult because of ambiguities in B.C. (edge,
axis), heat source model, additional ordering, etc...

e Physics application
— Global effects (w’-shearing, turbulence spreading, avalanches)
— Plasma size scaling (Bohm like features in experiments)
— Advanced tokamak configuration with reversed ¢ profile
— Expensive for electron turbulence, electromagnetic turbulence

Global modeli




a9
ot
_ Narrow calculation domain along a single field line
— Complete scale separation by neglecting O(p/a) effects
T,T',q,q9' — const. , radial periodic B.C.
— Only df'is solved with fixed gradient parameters
— First principles are lost
— Benchmark results are well converged among several codes
e Physics application
— Advanced issues (electron turbulence, multi-scale turbulence)
— Widely used in experimental data analysis
— Difficulty with meso-scale turbulent structures (streamers, etc...)
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(&u)merical approaches in solving GK equations

e Particle/Lagrangian approach (PIC)

— Particle-In-Cell (PIC) method
(Birdsal-Langdon,Hockney-Eastwood, Tajima)

— Nonlinear ¢f method
(Parker,PFB93,Aydemir,POP94)

— Relatively small memory usage

e Mesh/Eulerian approach (Vlasov)
— CFD scheme in 5D phase space
o Semi-Lagrangian method
o Finite difference method
e Spectral method
— Huge memory usage

-
I~

"'>|<'v"|"' ____



. . A)
gara el performance of mesh code on Altix3700Bx2

Problezrgosbize with 8TB: (N,,N,,N_,N,,N, ) = (512,512,64,100,98) ~ 0.164Tgrids

Gyrokinetic 5D Vlasov code G5D STB
e Morinishi’s finite difference scheme + FFT
2000 }° Adaptive Runge-Kutta scheme
e 3D domain decomposition
Xx-y: MPI2 Put/Get
1500 v,: MPI1 group comm.

4TB

1000 -~ total mem. fixed

=@- mem./proc. fixed
20% line
— 25% line
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Number of Processors
JAEA Altix3700Bx2: 2048 Itanium2 (1.6GHz,6.4Gflops), 13TB memory




4. Particle/Lagrangian approach



e Newton-Poisson system for electrostatic one component plasma

Physical model of many body system

Egs. of motion

Klimontovich distribution

—)dx’dv’ Poisson Eq.

— Involve all the dynamics (collisions, multiple body correlation)
— Prohibitive for macro-scale simulation with r,~10¥m

28
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| From Klimontovich Eqg. to Vlasov Eq.

e Introduce statistical average < > for Klimontovich distribution

<K(x,v,t)> = nofl(x,v,t)

<K(x, v,1)K(x'V, t)> =n f,(xvx' V1) = 8(x = x)S(v =, £, (x, 1)

e Statistical average of Klimontovich equation
’ < iK(X',V',l‘)@K(x,V,Z‘)

mny \? ox |x—x' ov

a’x'a’v’> =0

J-@ 1 0g,(xvx V1)

dx'dv'

m ¥ Ox ‘x—x' ov

— dx'dv'

— g, is ~O(g,) effect in discreteness parameter ¢,=1/(n,1,%*)<<1

AS



Viasov limit and super particles

e Lowest order equation in BBGKY hierarchy

— Collective motion in |.h.s. is not affected by w
— Rosenbluth chopping (#<<1) naturally lead to Vlasov limit
— Super particles (.9\4>>1) enhance collisions by % times

(0} Q
o At/ o
Rosenbluth O:—\O:—}O Super 9
Chopping e :./i\.:. . Particles
0\\1)'/0 .\\11}. L

ol
2032 20 O
@« )—O
e SRS O
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ge!u)ce enhanced collisions with finite size particles

e Newton-Poisson system for PIC simulation

NSP

Kp(xv1)= Y. S o=, (0=, 1)

Jj=1

0’
o 4%69Wj K o (x,v,8)dv

— Shape factor S, works as low-pass Fourier filter
Ssp(x) Ssp(k)
Point charge

Ssp(x)=0lx) ‘ ‘

“SSP(X)

Finite size ‘
particle /[XQ
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~Reduce particle weight with ¢t PIC method

e Equation system of of PIC simulation

(Parker-Lee,PFB93, Aydemir,POP94, Allfrey,CPC03)

o ZAV.I:—V%+£%%

J J

S5

i

analytic particles

— Particle weight can be reduced by of /f,~0.01
— DfIDt=0 is assumed in weight evolution equation

— Monte-Carlo sampling of ¢f (sampling points can be optimized)
(Hatzky,POPO02)

32
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“Comparisons of PIC and Jf PIC simulations

e Gyrokinetic simulations of ion temperature gradient driven turbulence
G3D code (Idomura,POP00), L =L =16p,, L,=8000p,, L,/L,=0, L /L,=0.42

Time histories of turbulent field energy

6e-05
5e-05
4e-05
3e-05

o
—
Sq)
-~
—
\ e~ ’
S

2e-05
1e-05
0

¢ oF-mx| (33M) ——

. of-opt (4M)
"‘-fu I-f (268M) oo

B WY e

0 2 4 6 8 10 12 14 16 18 20
tQx1073

of-mxI(33M)

of-P1C, Maxwellian K p

~9.9x103 particles/cell-mode
of-mxI(4M)

of-P1C, Maxwellian K

~1.2x103 particles/cell-mode
of-opt(4M)

of-PI1C, Optimised K,

~1.2x103 particles/cell-mode
full-(268M)

PIC, Maxwellian K,

~8x10* particles/cell-mode

— of PIC converges significantly faster than conventional PIC
— Optimization of sampling points accelerates convergence
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~“Summary of Particle/Lagrangian approach

e PIC simulation model
— Many body system with heavier particles enhance collisions
— Enhanced collisions are reduced by finite size particle model
e of PIC simulation model
— Monte-Carlo sampling of ¢f using marker particles
— Particle weight and collisions reduced by of /f,~0.01
— Significantly faster convergence than conventional PIC
® Issues in of PIC simulations
— of and particle weight increase monotonically in time

— DfIDt=0 is severe constraint of ¢f PIC simulations

(Brunner,POP99, Wang,PPCF99, Hu,POP94, Lin,POP04)

34



5. Mesh/Eulerian approach



(g Iasov simulation based on mesh approaches

e Vlasov-Poisson system for electrostatic one component plasma

=0 Vlasov Eq.

Ot Ox m Ox OV
82¢ .
—— = 4ﬂenojf(x, v,t)dv Poisson Eq.

OX
— All the dynamics determined by f; and ¢,
e Semi-Lagrangian approach: mapping of 1 using DfIDt=0
fle,v,t)= fx—Atk,v— A, t — At)
— Splitting method, Semi-Lagrangian method, CIP method, etc
(Cheng,JCP76, Sonnendrucker,JCP99, Nakamura,JCP99)
e Eularien approach: discretize PDE on phase space grids (x;,v)

5, =la, el
ot |; ; /| o ., omox || ov ]

— Spectral method, Non-dissipative/Dissipative finite difference

36



—  Splitting scheme (Cheng-Knorr,JCP76)

e Vlasov equation is given by separable Hamiltonian

H(x,v): %mv2 +e¢( )= T(V)-I— V(x)

ov ov ox ox
— Hamilton’s Eqg. consists of free motions in x and v
e Mapping is splitted into three free motions v

£ (x,v)= f"(x—xAt/2,v)

f**(x,v):f*(x,v—\'/At)
f**(x—)'cAt/Z,v)
— Each free motions are canonical transform _
— 2" order symplectic integrator X

— Semi-Lagrangian method for non-separable Hamiltonian
(Brunetti,CPC04, Grandgirard,JCP06)




(.) Aliasing errors

e Phase mixing leading to fine scale structures in turbulent flows

e Aliasing errors in resolving fine scales with finite grid widths

iR VAVAVAVAVAVA
O o

Xi2 Xi g X; Xivy X2 Xio Xi g X; Xivy X2

l l

— Aliasing errors are inevitable in finite difference approach
— Spurious sub-grid oscillations cause numerical instability



( ) Dissipative finite difference operator

e Finite difference approximation for 1D advection problem

o, .9 _,

ot Ox

c>0

2
c{gi} = ’*12th = =cf/ +h—cf "t cO( 4) Centred finite difference
X i,center

} = % =cf]+ %cf” + cO(h3) Upwind finite difference
i,upwind

fa=fEhf'+ —f”ﬁf”

— Centered flnlte dlfference IS non-dissipative, but its dispersive
errors do not suppress numerical oscillations

— Dissipative error in upwind finite difference smear out not
only numerical oscillations but also solution itself

— Various less dissipative higher order schemes are available
(Candy,JCP03, Watanabe,NF06, Xu,|IAEAQ6)




( )Non-dissipative finite difference operator

e Finite difference method for Poisson bracket operator
(Arakawa,JCP66, Morinishi,JCP97)

— Suppress numerical oscillations by conserving fand /2

AN A AV VAVAVAVAVAVA
VARVARVARS.

e Finite difference operators proposed by Arakawa and Morinishi

> X

W H | =ed(f H)+c,J7(f H)+e,J5(f,H) 2D Arakawascheme

ox, | 2| ox, 2| ox,

ov ov
{ uf:| :1{ ﬂf:| +1V{6f} Morinishi scheme

— Both operators are conservative for {f,H} and f{f,H}

— Morinishi scheme can be extended to higher dimension
(Idomura,JCPQ7)



Non-dissipative gyrokinetic simulation

(a) Field energy

ITG turbulence simulation M T
G5D code (Idomura,JCP07) s

— FVM: 2" order centered
finite difference

— Morinishi: 2"d order
Morinishi scheme 0

E(t) | Ef0)+E4(0)

0 10 20 30 40
1Qx107°

(b) Error of L1 norm N jfa’ Z (c) Error of L2 norm M If d Z

1e-12 .
FVM FVM
Morinishi —_— Morinishi

[N()-N(0)] / N(0)
|M(H)-M(0)| | M(0)

l—

20 40




— 42
(!o%parison between Vlasov and PIC simulations

e Gyrokinetic simulations of slab ion temperature gradient turbulence
G3D/G5D (Idomura,POP00,JCPQ7), L =2L =32p,, L.=8000p,, L,/L,=0, L /L,=0.86

X 't

(a) Vlasov code (~255 CPU hours) (b) PIC code (~211 CPU hours)

3e-05 —y 3e-05 ——
i otal 0Lp —— otal oF
field energy fieid sz, - fold o

2e-05 2e-05

L

1e-05 1e-05
itotal energy

0 0

—
=)
=
+
)
=
—
—~
e,
=2
ZS)

SE(f) | EA0)+Ex(0)

~2500 particles/cell-mode
-3e-05 ;

20 40 60 80 100 120
tQx1073

— Results show quantitative agreement up to saturation phase

— PIC simulation show spurious heating due to numerical noise

— Secular accumulation of error is not observed in Vlasov simulation
(Memory usage was ~5 times larger in Vlasov simulation)
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| Summary of Mesh/Eulerian approach

e Semi-Lagrangian approach
— Vlasov simulation was initiated by splitting method
— Splitting method works as symplectic integrator for Vlasov Eq.
— Semi-Lagrangian method is used for Gyrokinetic Eq.
e Dissipative upwind finite difference approach
— Suppress numerical oscillations by numerical dissipation
— Less dissipative higher order schemes are available
e Non-dissipative finite difference approach
— Suppress numerical oscillations by conserving fand /2
— Conserve phase space volume, £, and f?
e Equivalence of Vlasov and PIC simulations
— Converged Vlasov and PIC simulations give the same results
— Vlasov code may be advantageous in long time simulation

43



6. Collisionless gyrokinetic simulation
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( ) Collisionless gyrokinetic simulation?

e Collisionless gyrokinetic equation

af+{f,H}:O

ot

— Similar to Euler equation which describes ideal fluids (Re=)

— Where does turbulent field energy go?
e One possible scenario in micro-turbulence simulations

Excitation of micro-instabilities

-

Nonlinear energy transfer in configuration space

<L L

Energy sink (Landau damping) at p, scale

-

Phase mixing in velocity space

<L L

=== GK(FULL) ™
x Wailand
O GK (Sydoa)
— & — G (Kotsch.)
—8— GFL (Beer)
—8— GX (Dimits)

ITG w,y-spectrum (Dimits,POPO00)



(!Ease mixing due to parallel streaming motion

e Free streaming starting from f{(x,v,0)=(2 z)"Y2exp(-v3/2)cos(kx)

46

01 23 456X 012345¢6X 012345%6X 012345¢6X 01234516X

— n damps away with conserving f
— Fine scale structures are continuously produced
— In reality, weak collisions, « o? f, smear out fine structures
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~ Phase mixing in numerical simulations

e Free streaming on discrete phase space grids (x;,v)=(i4x,j4v)
f(xl.,vj,t)z f(xl. —Vt, vj,O)z (27[)_

f(x,.,vj,t)zf(xl.,vj,t+TR),

a7

01 23 456X 012 345¢6X 012 345¢6X 012 345©6X 01234586X

— Spurious recurrence phenomena occurs due to aliasing error
— Purely collisionless simulation is limited for ¢<7,/2
— Most of GK simulations go further with numerical dissipation



(' ) 48
ntro y balance relation in gyrokientic equation
e Slab gyrokinetic equation (drop O(p"), local limit 7,VT — const.)

Vo =—Spx vralh. oy
[v,,b+Bbe<¢>a} Vo = Bb V{p) Vf0+mb V(g) o, +C(f)

(6=(9),,. )= 4ren, [ F5((R+p)-a}n’Bdz

e Balance relation of fluctuation entropy oS
(Lee,PF88, Krommes,POP94, Sugama,POP96)

= Q0 + D

[ . L
erq{ropv field energy heat flux dissipation

5Ssj%m23dl=j[flnf—]g In £, ]m*Bdz.+0(5®)

1— 1, (k202 Jexp(— & fpti)h’f" no+1

2 k; #0

_j%bxv<¢>anoéTdR]VlnT, D=_[C(
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CH% distinct statistical states of entropy balance

(Watanabe-Sugama,POP02, POP04)
e Collisionless limit with zonal flows dsSs  dw

— Turbulence is quenched by zonal flows JETE 0 ~00=D=0
e Collisionless limit without zonal flows

— Quasi-steady W,0 with increasing oS
e Collisional case without zonal flows

— Steady state with balanced O and D

A A A

doS/dt doS/dt doS/dt

t

t

Collisionless Collisionless Collisional
with zonal flows w/o zonal flows w/o zonal flows



(Asvmptotic behavior of Q In weak collisional limit
e Relevant steady state determined by O+D=0

— Is O determined by forcing (gradients) or dissipation?
e Collisionality vdependence of diffusivity y in weak collisional limit

Slab ITG turbulence simulation T

(Watanabe-Sugama,POP04) _ Ar=1/160

e yapproaches to collisionless
limit asymptotically

Ar=1/320

= 04 |

e yisindependent of vfor <104 02

e ( (=D) is determined by forcing 0L

10°  10° 10 107

Collision fl'equn{_‘.}.r VvV

— Convergence study for numerical dissipation is important
Grid number, particle number, hyper diffusivity, etc...

50
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| Summary of entropy balance relation

e Phase mixing in velocity space
— Parallel streaming continuously produce fine scale structures
— n damps away with conserving f (phase mixing damping)
— Discrete system shows spurious recurrence effect
— To avoid recurrence numerical/physical dissipation is heeded
e Collisionless limit in gyrokinetic simulations
— Steady solution of entropy balance is given by O+D=0
— yapproaches to collisionless limit asymptotically with v — 0
— Forcing determines heat flux O at weakly collisional regime
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