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Macroscopic Instabilities

e Two main types of macroscopic instabilities in tokamaks: ?

— Catastrophic “ideal” (i.e., non-reconnecting) instabilities,
which disrupt plasma in few micro-seconds. Can be avoided by

limiting plasma pressure and current.

— Slowly growing “tearing” instabilities, which reconnect
magnetic flux-surfaces to form magnetic islands, thereby
degrading their confinement properties. Much harder to avoid.

aMHD Instabilities, G. Bateman (MIT, 1978).
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/ Magnetic Islands \

Resonant Surface Magnetic Island

POLOIDAL
CROSS-SECTION

Magnetic Flux-Surface

e Helical structures, centered on rational magnetic flux-surfaces
which satisfy k - B = 0, where k is wavenumber of mode, and B is

equilibrium magnetic field.

e Effectively “short-circuit” confinement by allowing heat/particles
to radially transit island region by rapidly flowing along magnetic
\ field-lines, rather than slowly diffusing across flux-surfaces. /
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Need for Magnetic Island Theory

Magnetic island formation associated with nonlinear phase of
tearing mode growth (i.e., when radial island width becomes
greater than linear layer width at rational surface).

In very hot plasmas found in modern-day tokamaks, linear layers

so thin that tearing mode already in nonlinear regime when first
detected.

Linear tearing mode theory largely irrelevant. Require nonlinear
magnetic island theory to explain experimental observations.
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MHD Theory

e Tearing modes are macroscopic instabilities which affect whole

plasma. Natural to investigate them using some form of
fluid-theory.

e Simplest fluid theory is well-known magnetohydrodynamical
approximation,® which effectively treats plasma as single-fluid.

e Shall also use slab approximation to simplify analysis.

aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).
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Slab Model

Cartesian coordinates: (x, y, z). Let 9/0z = 0.
Assume presence of dominant uniform “toroidal” lgz Z.
All field-strengths normalized to B,.

All lengths normalized to equilibrium magnetic shear-length:
Ls = BZ/B‘; (0).

All times normalized to shear-Alfvén time calculated with B,.
Perfect wall boundary conditions at x = +a.

Wavenumber of tearing instability: K = (0,k,0), so K-B=0 at
x = 0. Hence, rational surface at x = 0.




/ Model MHD equations \

o Let B, — V1 x z and \7=Vc|) x Z, where V is E x ﬁvelocity.

e« B. Vi = V. V$ =0, so P maps magnetic flux-surfaces, and ¢
maps stream-lines of E x B fluid.

e Incompressible MHD equations:

P

ol (b, W] +17,
%—f — [, U] £ [, ] + 1 V2L,

where ] = V2, U = V?d, and [A,B] = A, B, — A, Bx. Here, n
is resistivity, and W is viscosity. In normalized units: 1, 1 < 1.

e First equation is z-component of Ohm's law. Second equation is
z-component of curl of plasma equation of motion.

\ aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003). /
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Outer Region

e In “outer region”, which comprises most of plasma, non-linear,
non-ideal (1 and 1), and inertial (3/dt and V - V) effects
negligible.

e \orticity equation reduces to

J,p] ~0.

e When linearized, obtain P (x,y) = P (x) + P (x) cos(ky),
where Bg‘” = —dy'%)/dx, and

a2 d?By’ /dx?
(——k2> 1|)(”< ;(O) v =o.

dx?2
y

e Equation is singular at rational surface, x = 0, where B{,‘” = 0.




/ Tearing Stability Index \

e Find tearing eigenfunction, PP (x), which is continuous, has
tearing parity (1) (—x) =11 (x)], and satisfies boundary
condition ") (a) = 0 at conducting wall.

e |n general, eigenfunction has gradient discontinuity across rational
surface (at x = 0). Allowed because tearing mode equation

singular at rational surface.
e Tearing stability index:

o [dmp
B dx |,

e According to conventional MHD theory,® tearing mode is unstable
if A" > 0.

\ aH.P. Furth, J. Killeen, and M.N. Rosenbluth, Phys. Fluids 6, 459 (1963). /
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Inner Region

e “Inner region” centered on rational surface, x = 0. Of extent,
W <« 1, where W is magnetic island width (in x).

e In inner region, non-ideal effects, non-linear effects, and plasma
inertia can all be important.

e Inner solution must be asymptotically matched to outer solution
already obtained.

\_ /
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Constant-1{ Approximation

e (1) (x) generally does not vary significantly in x over inner region:
W W) =M 0) < ' (0)].

o Constant-\p approximation: treat 1) (x) as constant in x over
inner region.

e Approximation valid provided
AW« 1,

which is easily satisfied for conventional tearing modes.

\_ /
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Constant-{ Magnetic Island

e In vicinity of rational surface, 1|)(O) — —XZ/Z, SO
U(x,y,t) ~ —x2/2 +¥(t) cosh,
where W =11 (0) is “reconnected flux’, and 8 = k.

e Full island width, W = 4 VV.
ky =0 ky =n ky = 2n

- X—point
Ly ffffff ffffffffffffffffffffff W oo -

O-point:p=+W¥

separatrix: | = - W

/
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Flux-Surface Average Operator

e Flux-surface average operator is annihilator of Poisson bracket
[A, ] =B - VA =kx (0A/030)y, for any A: ie.,

(1A, P]) = 0.
e Outside separatrix:
[ f(},0) de

e Inside separatrix:

Oo B
<f(s,¢,e)>zj f(s,,0) +f(—s,,0) do

—0, 2 ‘X‘ 27t

where s = sgn(x), and x(s,\,0y) = 0.

~
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MHD Flow -I|
Move to island frame. Look for steady-state solution: 0/0t = 0.?
Ohm’s law:
0~ld,Yl+n]J.
Since n < 1, first term potentially much larger than second.

To lowest order:

[, ] ~0.

Follows that
b =)

i.e., MHD flow constrained to be around flux-surfaces.

\_

aF.L. Waelbroeck, and R. Fitzpatrick, Phys. Rev. Lett. 78, 1703 (1997).
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MHD Flow - Il
o |et 5
d
M) = a0
e Easily shown that
Vy =x M.

e By symmetry, M (1) is odd function of x. Hence,
M=0

inside separatrix: i.e., no flow inside separatrix in island frame.

Plasma trapped within magnetic separatrix.

\_ /
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MHD Flow - Il
e \orticity equation:
0~ [-MU+], ] +p V.

e Flux-surface average, recalling that ([A,{]) = 0:

2
(Vi) = —% (<x4> %) ~ (.

e Solution outside separatrix:

) —00
M() = sgn(x) Mo J wdll)/<x4>/J d/(x").
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MHD Flow - IV

Note that
Vy, =xM — |x| Mg

as x|/ W — .
V-shaped velocity profile which extends over whole plasma.

Expect isolated magnetic island to have /ocalized velocity profile.
Suggests that My = 0 for isolated island.

Hence, zero MHD flow in island frame: i.e., island propagates at
local E x B velocity.
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Rutherford Equation - |

e Asymptotic matching between inner and outer regions yields:

— 00

A'Y = —4J (J cos ©) du.
+

e In island frame, in absence of MHD flow, vorticity equation
reduces to

J, ] ~0.

e Hence,

J=T0).

\_
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Rutherford Equation - 1l

Ohm's law:
dv
——cos0 ~ [b, V] +1J().
dt
Have shown there is no MHD-flow [i.e., & ~ O(1)], but can still be

resistive flow [i.e., d ~ O(n)].

Eliminate resistive flow by flux-surface averaging:

dV¥

Ty (cosB) ~nJ()(1).

Hence,

4 d¥ J_OO (cos 0)? au

ANY~—— ——
n dt )y (1)
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Rutherford Equation - |l

e Use W =4V, and evaluate integral. Obtain Rutherford island

width evolution equation: ®

0.823 AW

A
n dt

e According to Rutherford equation, island grows algebraically on

resistive time-scale.

e Rutherford equation does not predict island saturation.

2P.H. Rutherford, Phys. Fluids 16, 1903 (1973).

\_
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Rutherford Equation - IV

e Higher order asymptotic matching between inner and outer
regions yields: #

0823 AW _ /oo (_d'By /At
nodt d2By /dx2 ),

e Hence, saturated (d/dt = 0) island width is

A [ a?By)/ax?
Wo=0a1 \ "R, 1a '
: d*By /dx N

aF. Militello, and F. Porcelli, Phys. Plasmas 11, L13 (2004). D.F. Escande, and

M. Ottaviani, Physics Lett. A 323, 278 (2004).

\_

/
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MHD Theory: Summary

Tearing mode unstable if A’ > 0.
Island propagates at local ExB velocity at rational surface.
Island grows algebraically on resistive time-scale.

Saturated island width:

(0)
W A < d2B) /dx2> |
x=0

0.41 d4B£,O)/dX4

24
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Drift-MHD Theory

In drift-MHD approximation, analysis retains charged particle drift
velocities, in addition to ExB velocity.

Essentially two-fluid theory of plasma.

Characteristic length-scale, p, is ion Larmor radius calculated with

electron temperature.

Characteristic velocity is diamagnetic velocity, V., where

— —

neV, x B=VP.

Normalize all lengths to p, and all velocities to V...
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Basic Assumptions

e Retain slab model, for sake of simplicity.

e Assume parallel electron heat transport sufficiently strong that
Te — Te (1|))

e Assume T;/T. = T = constant, for sake of simplicity.

\_
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/ Basic Definitions \

e Variables:
— 1 - magnetic flux-function.
— J - parallel current.
— ¢ - guiding-center (i.e., MHD) stream-function.
— U - parallel ion vorticity.
— m - electron number density (minus uniform background).

— V, - parallel ion velocity.

e Parameters:

— « = (L, /Ls)?, where L,, is equilibrium density gradient
scale-length.

— 1 - resistivity. D - (perpendicular) particle diffusivity. p; /. -

\ (perpendicular) ion/electron viscosity. /
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Drift-MHD Equations - |

e Steady-state drift-MHD equations: @

P = —x?/24+Wcosh, U=V?,

0 = [p—n,p]+n],

0 = [CI>>U]—§{Vz[cl),n]ﬂu,n]ﬂvzn,d)]}
+, 0]+ wiVHd + 1) + e VHd — 1),

0 = [p,n]+[V,+T,¥]+DV?n,

0 = [b,Vol+ am, Pl + p VAV,

(1985).

\_

aR.D. Hazeltine, M. Kotschenreuther, and P.J. Morrison, Phys. Fluids 28, 2466

/

28



Symmetry: 1,

Drift-MHD Equations - |l

J, V, even in x. ¢, n, U odd in x.

Boundary conditions as [x|/W — oo:

-—n—o—(14+1)"x.

- ¢ - —Vx.
- I,U,Vz —

0.

Here, V is island phase-velocity in E x B frame.

V =1 corresponds to island propagating with electron fluid.

V = —7 corres

Expect

ponds to island propagating with ion fluid.

1> o> n>D> Hi, He-

29




\_

Electron Fluid

Ohm's law:

Since n < 1, first term potentially much larger than second.

To lowest order:

Follows that

n=d¢+H@):

I.e., electron stream-function ¢ = ¢ — n is flux-surface function.

Electron fluid flow constrained to be around flux-surfaces.

/
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Sound Waves
Parallel flow equation:
0= [, Vol + [, ] 4 i V2V,
Highlighted term dominant provided
W o« /2 =1,/L,.

If this is case then to lowest order

n =np),

which implies n = 0 inside separatrix.

So, if island sufficiently wide, sound-waves able to flatten density

profile inside island separatrix.

/

31



4 N

Subsonic vs. Supersonic Islands

e Wide islands satisfying
W > Ls/Ln

termed subsonic islands. Expect such islands to exhibit flattened
density profile within separatrix. Subsonic islands strongly coupled
to both electron and ion fluids.

e Narrow islands satisfying

W < Ls/Ln

termed supersonic islands. No flattening of density profile within
separatrix. Supersonic islands strongly coupled to electron fluid,
but only weakly coupled to ion fluid.

\_ /
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Subsonic Islands 2

e To lowest order:
¢ =), n=nP).

e Follows that both electron stream-function, ¢. = ¢ —n, and ion
stream-function, ¢; = ¢ + TN, are flux-surface functions. Both
electron and ion fluid flow constrained to follow flux-surfaces.

o Let

M) =d¢/dp, L) =dn/dp.

e Follows that

VeExBy =XM, Vey =x(M —-1), Viy =x(M+1L).

\_

2R. Fitzpatrick, F.L. Waelbroeck, Phys. Plasmas 12, 022307 (2005).

/
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Density Flattening

e By symmetry, both M (1) and L(1{) are odd functions of x.
Hence,

M) =Lp) =0

inside separatrix: i.e., no electron/ion flow within separatrix in
island frame.

e Electron/ion fluids constrained to propagate with island inside
separatrix.

e Density profile flattened within separatrix.

\_
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Analysis - |
e Density equation reduces to
0~[V,+], P +DV?n.

e Vorticity equation reduces to
0 ~ [-MU-—(t/2)(LU+MV?n)+],0]
i VHd + ) + e VH(d — ),

e Flux-surface average both equations, recalling that ([A,{]) = 0.

/
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/ Analysis - 1l \

e Obtain
(V*n) ~ 0,
and

(i + pe) (VD) + (1 T— pe) (Vin) ~ 0.

e Solution outside separatrix:

(T —pe)
M) = (T ) L) + F(),

where
L(Wp) = —sgn(x) Lo/ (x*),
and F(1) is previously obtained MHD profile:

) —00
F(W) = sen(x) Fo J_w dp/(x*) / J_w ap/(x*).

\_ /
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Velocity Profiles

e As [x|/W — oo then xL — Ly and xF — [x| Fop.

e L(1) corresponds to localized velocity profile. F(1{) corresponds to
non-localized profile. Require localized profile, so Fo = 0.

e Velocity profiles outside separatrix (using b.c. on n):

He |X|
Vi ~ + y
b ui—l'ue <X2>
v o (mTt—pe) I
VEXE T ) (i 4 pe) (X2
Vye _ Hi x|

_FLi T He <X2> .
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rational surface

electrons
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Island Propagation \

As |x|/W — oo expect V, Exp — Ve — V, where Vg is
unperturbed (i.e., no island) E x B velocity at rational surface (in
lab. frame), and V is island phase-velocity (in lab. frame).

Hence
(M T — He)
(14 7) (i + He)

But unperturbed ion/electron fluid velocities (in lab. frame):

V = Vgp +

Vi=Veg +1/(1+7), Ve=Veg—1/(1+1).

Hence

V — ul \/1 _I_ ue Ve,
Hi + He i + He

So, island phase-velocity is viscosity weighted average of

unperturbed ion/electron fluid velocities. /

39



Polarization Term - |

e \orticity equation yields

2
[~ 1(Xz B <Z<]>>> d[Mu;AJTL)] £ 1(0)

2

outside separatrix, where J. is part of ] with cos© symmetry.

e As before, flux-surface average of Ohm's law yields:

) = 100) (1) =0~ S (cos 0).
e Hence
e (x?)\ d[M (M + tL)] 1 d¥ (cos 0)
) T

/
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Polarization Term - ||

Asymptotic matching between inner and outer regions yields:

—00

A'Y = —4J (Je cos®) dip.

+W¥

Evaluating flux-surface integrals, making use of previous solutions
for M and L, obtain modified Rutherford equation:

0.823 dW (V—Vgp) (V—V;)
~ A" +1.38
e TR L L A7 E

New term is due to polarization current associated with ion fluid
flow around curved island flux-surfaces (in island frame).
Obviously, new term is zero if island propagates with ion fluid:

i.e., V = Vi.

/
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Drift-MHD Theory: Summary

Results limited to large islands: i.e., large enough for sound waves

to flatten density profile.

Island propagates at (perpendicular) viscosity weighted average of
unperturbed (no island) ion and electron fluid velocities.

Bootstrap term in Rutherford equation is destabiizing.

Polarization term in Rutherford equation is stabilizing provided ion
(perpendicular) viscosity greatly exceeds electron (perpendicular)
viscosity (which is what we expect), and destabilizing otherwise.

/
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