Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

  • Fusion world | The EU blueprint for fusion energy

    The EU Blueprint for Fusion Energy workshop, convened by the European Commission's Directorate-General for Energy, brought together key stakeholders in the fiel [...]

    Read more

  • Neutral beam injection | ELISE achieves target values for ITER

    Researchers at the Max Planck Institute for Plasma Physics in Garching, Germany, have generated the ion current densities required for ITER neutral beam injecti [...]

    Read more

Of Interest

See archived entries

Electrical networks

Don't mess with AC current

Operating the ITER magnetic system requires the same kind of current that batteries deliver to flashlights, laptop computers and smartphones. This current, which flows in one direction only, is called "direct current" (DC), as opposed to the "alternating current" (AC) that powers most appliances and industrial machines. The behaviour of the AC current can be represented by a sine wave, also called a sinusoid, and it is very important that this wave remain regular. The problem is: the conversion process from AC to DC "pollutes" the AC current and disturbs its distribution. It is therefore imperative that operators, for the sake of their own equipment and for preserving the quality of distribution throughout the grid, implement corrective actions to protect the regularity of the AC current's sine wave.
 
What can be contained in a medium-size building in a steelworks or another heavy industrial facility requires a one-hectare yard at ITER. Adjacent to the Reactive Power Control Building, the reactive power compensators area accommodates reactors, capacitors, resistors and sensors that aim to smooth the flow of AC current both inside the ITER installation and in the immediate vicinity. (Click to view larger version...)
What can be contained in a medium-size building in a steelworks or another heavy industrial facility requires a one-hectare yard at ITER. Adjacent to the Reactive Power Control Building, the reactive power compensators area accommodates reactors, capacitors, resistors and sensors that aim to smooth the flow of AC current both inside the ITER installation and in the immediate vicinity.
In most heavy industry zones, such as steelworks or shipyards, the equipment for "reducing the harmonic distortion" in the AC current fits into a medium-size building. In ITER, which requires up to 500 MW of DC power, it occupies not only a building—the Reactive Power Control Building—but also the adjacent one-hectare "reactive power compensators area."
 
What happens within this dense arrangement of thyristor-controlled valves*, reactors, capacitors, resistors and sensors is a complex process aimed at smoothing the flow of AC current both inside the ITER installation and in the immediate vicinity—namely the neighboring CEA-Cadarache research centre and the villages closest to the ITER site.
 
The process is about compensating the "reactive power" that is generated in the AC current by the presence of "charges," such as the AC/DC converters in the ITER Magnet Power Conversion Buildings.
 
Contrary to "active power," which lights lamps and operates machines, this ghost-like current does not perform any useful work—it simply moves back and forth within the AC flow.
 
Any AC/DC conversion installation tends to intensify the reactive power in the AC network and to create harmonic distortions in the sine wave. Because the equipment inside the ITER Magnet Power Conversion Buildings is exceptionally powerful, the distortions, if not compensated, would deeply affect the local distribution of AC current.
 
It could also be quite costly in terms of electricity bills: transporting the useless reactive power has a cost, which the utility provider would end up billing the customer for. In this perspective, the construction of an efficient reactive power compensation system is a sound investment.
 
The ITER reactive power compensation and harmonic filtering system is among the largest in the world. In the Reactive Power Control Building, which hosts nine 3-metre-tall thyristors, equipment installation is now 80 percent complete; in the reactive power compensators area, it has passed the 75 percent mark.
 
Provided by China and manufactured by Rongxin Power Electronic Co. Ltd (RXPE), the equipment is being installed by the Italian Consortium Fincantieri SI and its partner SAET.
 
*Thyristors are powerful electronic switch controllers.


return to the latest published articles